全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

On the Classification of Lattices Over Which Are Even Unimodular -Lattices of Rank 32

DOI: 10.1155/2013/837080

Full-Text   Cite this paper   Add to My Lib

Abstract:

We classify the lattices of rank 16 over the Eisenstein integers which are even unimodular -lattices (of dimension 32). There are exactly 80 unitary isometry classes. 1. Introduction Let be the ring of integers in the imaginary quadratic field . An Eisenstein lattice is a positive definite Hermitian -lattice such that the trace lattice with is an even unimodular -lattice. The rank of the free -lattice is where . Eisenstein lattices (or the more general theta lattices introduced in [1]) are of interest in the theory of modular forms, as their theta series is a modular form of weight for the full Hermitian modular group with respect to (cf. [2]). The paper [2] contains a classification of the Eisenstein lattices for , , and . In these cases, one can use the classifications of even unimodular -lattices by Kneser and Niemeier and look for automorphisms with minimal polynomial . For , this approach does not work as there are more than isometry classes of even unimodular -lattices (cf. [3, Corollary 17]). In this case, we apply a generalisation of Kneser’s neighbor method (compare [4]) over to construct enough representatives of Eisenstein lattices and then use the mass formula developed in [2] (and in a more general setting in [1]) to check that the list of lattices is complete. Given some ring that contains , any -module is clearly also an -module. In particular, the classification of Eisenstein lattices can be used to obtain a classification of even unimodular -lattices that are -modules for the maximal order respectively, where in the rational definite quaternion algebra of discriminant and respectively. For the Hurwitz order , these lattices have been determined in [5], and the classification over is new (cf. [6]). 2. Statement of Results Theorem 1. The mass of the genus of Eisenstein lattices of rank is There are exactly isometry classes of Eisenstein lattices of rank . Proof. The mass was computed in [2]. The 80 Eisenstein lattices of rank 16 are listed in Table 4 with the order of their unitary automorphism group. These groups have been computed with MAGMA. We also checked that these lattices are pairwise not isometric. Using the mass formula, one verifies that the list is complete. To obtain the complete list of Eisenstein lattices of rank 16, we first constructed some lattices as orthogonal sums of Eisenstein lattices of rank 12 and 4 and from known 32-dimensional even unimodular lattices. We also applied coding constructions from ternary and quaternary codes in the same spirit as described in [7]. To this list of lattices, we applied Kneser’s

References

[1]  M. Hentschel, A. Krieg, and G. Nebe, “On the classification of even unimodular lattices with a complex structure,” International Journal of Number Theory, vol. 8, no. 4, pp. 983–992, 2012.
[2]  M. Hentschel, A. Krieg, and G. Nebe, “On the classification of lattices over , which are even unimodular -lattices,” Abhandlungen aus dem Mathematischen Seminar der Universit?t Hamburg, vol. 80, no. 2, pp. 183–192, 2010.
[3]  O. D. King, “A mass formula for unimodular lattices with no roots,” Mathematics of Computation, vol. 72, no. 242, pp. 839–863, 2003.
[4]  A. Schiemann, “Classification of Hermitian forms with the neighbour method,” Journal of Symbolic Computation, vol. 26, no. 4, pp. 487–508, 1998.
[5]  C. Bachoc and G. Nebe, “Classification of two Genera of 32-dimensional Lattices of Rank 8 over the Hurwitz Order,” Experimental Mathematics, vol. 6, no. 2, pp. 151–162, 1997.
[6]  A. Henn, Klassifikation gerader unimodularer Gitter mit quaternionischer Struktur [Ph.D. thesis], RWTH Aachen University.
[7]  C. Bachoc, “Applications of coding theory to the construction of modular lattices,” Journal of Combinatorial Theory A, vol. 78, no. 1, pp. 92–119, 1997.
[8]  M. Kitazume and A. Munemasa, “Even unimodular Gaussian lattices of rank 12,” Journal of Number Theory, vol. 95, no. 1, pp. 77–94, 2002.
[9]  K. Hashimoto, “On Brandt matrices associated with the positive definite quaternion Hermitian forms,” Journal of the Faculty of Science, vol. 27, no. 1, pp. 227–245, 1980.
[10]  R. Coulangeon, “Réseaux unimodulaires quaternioniens en dimension ,” Acta Arithmetica, vol. 70, no. 1, pp. 9–24, 1995.
[11]  J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, vol. 290, Springer, New York, NY, USA, 3rd edition, 1999.
[12]  M. Hentschel, “Die -Gitter im MAGMA-Kode als Gram-Matrizen,” http://www.matha.rwth-aachen.de/de/mitarbeiter/hentschel/.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133