全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Some Curvature Conditions on a Para-Sasakian Manifold with Canonical Paracontact Connection

DOI: 10.1155/2012/395462

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study canonical paracontact connection on a para-Sasakian manifold. We prove that a Ricci-flat para-Sasakian manifold with respect to canonical paracontact connection is an -Einstein manifold. We also investigate some properties of curvature tensor, conformal curvature tensor, -curvature tensor, concircular curvature tensor, projective curvature tensor, and pseudo-projective curvature tensor with respect to canonical paracontact connection on a para-Sasakian manifold. It is shown that a concircularly flat para-Sasakian manifold with respect to canonical paracontact connection is of constant scalar curvature. We give some characterizations for pseudo-projectively flat para-Sasakian manifolds. 1. Introduction In 1976, Sato [1] introduced the almost paracontact structure satisfying and on a differentiable manifold. Although the structure is an analogue of the almost contact structure [2, 3], it is closely related to almost product structure (in contrast to almost contact structure, which is related to almost complex structure). It is well known that an almost contact manifold is always odd-dimensional but an almost paracontact manifold defined by Sato [1] could be even dimensional as well. Takahashi [4] defined almost contact manifolds equipped with an associated pseudo-Riemannian metric. In particular he studied Sasakian manifolds equipped with an associated pseudo-Riemannian metric. Also, in 1989, Matsumoto [5] replaced the structure vector field by in an almost paracontact manifold and associated a Lorentzian metric with the resulting structure and called it a Lorentzian almost paracontact structure. It is obvious that in a Lorentzian almost paracontact manifold, the pseudo-Riemannian metric has only signature 1 and the structure vector field is always timelike. These circumstances motivated the authors [6] to associate a pseudo-Riemannian metric, not necessarily Lorentzian, with an almost paracontact structure. Kaneyuki and Konzai [7] defined the almost paracontact structure on pseudo-Riemannian manifold of dimension and constructed the almost paracomplex structure on . Zamkovoy [8] associated the almost paracontact structure introduced in [7] to a pseudo-Riemannian metric of signature and showed that any almost paracontact structure admits such a pseudo-Riemannian metric which is called compatible metric. Tanaka-Webster connection has been introduced by Tanno [9] as a generalization of the well-known connection defined by Tanaka [10] and, independently, by Webster [11], in context of CR geometry. In a paracontact metric manifold Zamkovoy [8]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133