Fuzzy logic-based techniques have been developed to model input-output relationships of metal inert gas (MIG) welding process. Both conventional and hierarchical fuzzy logic controllers (FLCs) of Mamdani type have been developed, and their performances are compared. The conventional FLC suffers from the curse of dimensionality for handling a large number of variables, and a hierarchical FLC was proposed earlier to tackle this problem. However, in that study, both the structure and knowledge base of the FLC were not optimized simultaneously, which has been attempted here. Simultaneous optimization of the structure and knowledge base is a difficult task, and to solve it, a genetic algorithm (GA) will have to deal with the strings having varied lengths. A new scheme has been proposed here to tackle the problem related to crossover of two parents with unequal lengths. It is interesting to observe that the conventional FLC yields the best accuracy in predictions, whereas the hierarchical FLC can be computationally faster than others but at the cost of accuracy. Moreover, there is no improvement of interpretability by introducing a hierarchical fuzzy system. Thus, there exists a trade-off between the accuracy obtained in predictions and computational complexity of various FLCs. 1. Introduction Arc welding process plays a vital role in manufacturing. Despite the widespread use of arc welding for joining the metals, total automation of the process is yet to be achieved, and it is so due to the fact that the physics of the problem is not fully understood and quantified. Metal inert gas (MIG) welding is one of the most commonly used arc welding processes, due to its low initial cost and high productivity. To have the better knowledge and control of MIG welding process, it is necessary to determine its input-output relationships. MIG welding is a complex process involving multiple variables. The quality of weld bead is decided by its mechanical properties, which are dependent on its both metallurgical properties and bead geometry, which, in turn, depend on a number of input process parameters, such as welding speed, voltage, wire feed rate, gas flow rate, nozzle-plate distance, torch angle, surface tension of the molten metal, and electromagnetic force. Several approaches had been developed by various researchers to predict bead geometry in welding. Those approaches include theoretical studies, statistical regression analysis, and soft computing-based approaches. Rosenthal [1] studied temperature distributions in an infinite plate, due to a moving point heat
References
[1]
D. Rosenthal, “Mathematical theory of heat distribution during welding and cutting,” Welding Journal, vol. 20, no. 5, pp. 220–234, 1941.
[2]
D. K. Roberts and A. A. Wells, “Fusion welding of aluminum alloys,” Welding Journal, vol. 12, pp. 553–559, 1954.
[3]
L. J. Yang, R. S. Chandel, and M. J. Bibby, “An analysis of curvilinear regression equations for modeling the submerged-arc welding process,” Journal of Materials Processing Tech, vol. 37, no. 1–4, pp. 601–611, 1993.
[4]
N. Murugan, R. S. Parmar, and S. K. Sud, “Effect of submerged arc process variables on dilution and bead geometry in single wire surfacing,” Journal of Materials Processing Tech, vol. 37, no. 1–4, pp. 767–780, 1993.
[5]
N. Murugan and R. S. Parmar, “Effects of MIG process parameters on the geometry of the bead in the automatic surfacing of stainless steel,” Journal of Materials Processing Tech, vol. 41, no. 4, pp. 381–398, 1994.
[6]
J. P. Ganjigatti, D. K. Pratihar, and A. Roychoudhury, “Modeling of the MIG welding process using statistical approaches,” International Journal of Advanced Manufacturing Technology, vol. 35, no. 11-12, pp. 1166–1190, 2008.
[7]
J. P. Ganjigatti, D. K. Pratihar, and A. R. Choudhury, “Global versus cluster-wise regression analyses for prediction of bead geometry in MIG welding process,” Journal of Materials Processing Technology, vol. 189, no. 1–3, pp. 352–366, 2007.
[8]
D. K. Pratihar, Soft Computing, Narosa, New Delhi, India, 2008.
[9]
X. Li, S. W. Simpson, and M. Rados, “Neural networks for online prediction of quality in gas metal arc welding,” Science and Technology of Welding and Joining, vol. 5, no. 2, pp. 71–79, 2000.
[10]
S. C. Juang, Y. S. Tarng, and H. R. Lii, “A comparison between the back-propagation and counter-propagation networks in the modeling of the TIG welding process,” Journal of Materials Processing Technology, vol. 75, no. 1–3, pp. 54–62, 1998.
[11]
M. V. Amarnath and D. K. Pratihar, “Forward and reverse mappings of the tungsten inert gas welding process using radial basis function neural networks,” Proceedings of the Institution of Mechanical Engineers B, vol. 223, no. 12, pp. 1575–1590, 2009.
[12]
C. S. Wu, T. Polte, and D. Rehfeldt, “A fuzzy logic system for process monitoring and quality evaluation in GMAW,” Welding Journal, vol. 80, no. 2, supplement, pp. 33–S, 2001.
[13]
L. Hong, L. F. M. Kee, J. W. J. Yu et al., “Vision-based GTA weld pool sensing and control using neuro-fuzzy logic,” Tech. Rep. SIMTECH, 2000.
[14]
J. P. Ganjigatti and D. K. Pratihar, “Forward and reverse modeling in MIG welding process using fuzzy logic-based approaches,” Journal of Intelligent and Fuzzy Systems, vol. 19, no. 2, pp. 115–130, 2008.
[15]
J. Singh and S. S. Gill, “Multi-input single output fuzzy model to predict tensile strength of radial friction welded GI pipes,” International Journal of Information and Systems Sciences, vol. 4, no. 3, pp. 462–477, 2008.
[16]
G. V. S. Raju, J. Zhou, and R. A. Kisner, “Hierarchical fuzzy control,” International Journal of Control, vol. 54, no. 5, pp. 1201–1216, 1991.
[17]
E. H. Mamdani and S. Assilian, “An experiment in linguistic synthesis with a fuzzy logic controller,” International Journal of Man-Machine Studies, vol. 7, no. 1, pp. 1–13, 1975.
[18]
F. Cheong and R. Lai, “Designing a hierarchical fuzzy logic controller using the differential evolution approach,” Applied Soft Computing Journal, vol. 7, no. 2, pp. 481–491, 2007.
[19]
C. Lin, F.-L. Jeng, C.-S. Lee, and R. Raghavan, “Hierarchical fuzzy logic water-level control in advanced boiling water reactors,” Nuclear Technology, vol. 118, no. 3, pp. 254–262, 1997.
[20]
Y. Chen, B. Yang, A. Abraham, and L. Peng, “Automatic design of hierarchical Takagi-Sugeno type fuzzy systems using evolutionary algorithms,” IEEE Transactions on Fuzzy Systems, vol. 15, no. 3, pp. 385–397, 2007.
[21]
J. H. Holland, Adaptation in Natural and Artificial Systems, The University of Michigan Press, Ann Arbor, Mich, USA, 1975.
[22]
J. P. Ganjigatti, Application of statistical methods and fuzzy logic techniques to predict bead geometry in welding [Ph.D. thesis], IIT, Kharagpur, India, 2006.
[23]
O. Cordón, F. Gomide, F. Herrera, F. Hoffmann, and L. Magdalena, “Ten years of genetic fuzzy systems: current framework and new trends,” Fuzzy Sets and Systems, vol. 141, no. 1, pp. 5–31, 2004.
[24]
D. K. Pratihar, K. Deb, and A. Ghosh, “A genetic-fuzzy approach for mobile robot navigation among moving obstacles,” International Journal of Approximate Reasoning, vol. 20, no. 2, pp. 145–172, 1999.
[25]
D. C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons, New York, NY, USA, 2003.
[26]
N. Srinivas and K. Deb, “Multiobjective optimization using non-dominated sorting in genetic algorithms,” Evolutionary Computation, vol. 2, no. 3, pp. 221–248, 1994.