全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Synthesis, Characterization, and Antibacterial Activity of Co(II), Ni(II), Cu(II), Zn(II), Cd(II), and Hg(II) Complexes of Schiff's Base Type Ligands Containing Benzofuran Moiety

DOI: 10.1155/2013/614628

Full-Text   Cite this paper   Add to My Lib

Abstract:

Six new complexes of Co(II), Ni(II), Cu(II), Zn(II), Cd(II), and Hg(II) with substituted benzofuran derivatives have been synthesized and characterized by elemental analysis, magnetic moments, conductance measurements, spectral characterization, and so forth. Elemental data coincide with the general formula , where L = (E)-7-Methoxy-N1-(2,4,5-trimethoxy benzylidene) benzofuran-2-carbohydrazide (L1) or (E)-N1-(2,6-dichloro benzylidene)-7-methoxy benzofuran-2-carbohydrazide (L2), of the complexes. The ligands coordinate to the metal ions through the oxygen of the carbonyl group and the nitrogen of the hydrazine group. Electronic spectral data of the complexes suggests the probable geometry is octahedral in nature. All the complexes and ligands were screened for their antibacterial activity. Among them, Co, Ni, and Cu complexes of L2 showed good activity against all microbes. 1. Introduction Schiff’s bases are the most widely studied chelating ligands in coordination chemistry [1]. They are useful in catalysis in organic synthesis and in medicine as antibiotics, antiallergic, and antitumor agents [2]. Recently metal complexes of Schiff’s bases particularly derived from carbonyl compounds based on heterocyclic rings have been the centre of attraction in many areas [3–7]. Among them, benzofuran based fused heterocycles have been of great interest as they are abundant in nature and have wide pharmacological activities [8]. Benzofuran based compounds have been reported to show activities as anti-infective agents, like antifungal [9–12], antiprotozoal, and antitubercular [13–15], and also in the treatment of antiarrhythmic [16] and cardiovascular [17] diseases. According to the literature survey in the recent years, there has been an increased interest investigation of anti-microbacterial activities on benzofuran derivatives, especially 2-substituted [18] or 2,3-disubstituted benzofurans derivatives [19]. It is due to the presence of benzofuran derivatives in natural compounds. For example, the seed oil of the Egonoki plant, which contains a benzofuran derivative called egonal (Figure 1(a)), is an effective synergist for rotenone and pyrethrum against house flies, mosquitoes, aphides, and many other insects [20]. Similarly, Baker’s yeast contains a benzofuran derivative (Figure 1(b)) that acts as an antioxidant preventing hemorrhagic liver necrosis in rats and hemolysis of red cells in Vitamin-E deficient rats [21]. Figure 1: Structures of the benzofuran derivatives in (a) Egonoki plant and (b) Baker’s yeast. Therefore we thought it is worthwhile to synthesis

References

[1]  Y. Shibuya, K. Nabari, M. Kondo et al., “The copper(II) complex with two didentate schiff base ligands. The unique rearrangment that proceeds under alcohol vapor in the solid state to construct noninclusion structure,” Chemistry Letters, vol. 37, no. 1, pp. 78–79, 2008.
[2]  B. J. Gangani and P. H. Parsania, “Microwave-irradiated and classical syntheses of symmetric double Schiff bases of 1,1'-Bis(4-aminophenyl)cyclohexane and their physicochemical characterization,” Spectroscopy Letters, vol. 40, no. 1, pp. 97–112, 2007.
[3]  B. Sindhukumari, G. Rijuulal, and K. Mohanan, “Microwave assisted synthesis, spectroscopic,thermal and biological studies of some Lanthanide(III) chloride complexes with a hetrocyclic Schiff's bases,” Synthesis and Reactivity in Inorganic Metal-organic and Nano-Metal Chemistry, vol. 39, p. 24, 2009.
[4]  M. Thankamony and K. Mohanan, “Synthesis, spectral studies, thermal decomposition kinetics, reactivity and antibacterial activity of some lanthanide(III) nitrate complexes of 2-(N-indole-2-one)amino-3-carboxyethyl-4,5,6,7-tetrahydrobenzo[b]thiophene,” Indian Journal of Chemistry A, vol. 46, pp. 247–251, 2007.
[5]  N. Raman, J. Dhaveethu Raja, and A. Sakthivel, “Synthesis, spectral characterization of Schiff base transition metal complexes: DNA cleavage and antimicrobial activity studies,” Journal of Chemical Sciences, vol. 119, no. 4, pp. 303–310, 2007.
[6]  M. B. Halli and V. B. Patil, “Synthesis, spectral characterization and DNA cleavage studies of Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) complexes with benzofuran-2- carbohydrazide schiff bases,” Indian Journal of Chemistry A, vol. 50, no. 5, pp. 664–669, 2011.
[7]  Shashidhar, K. Shivakumar, and M. B. Halli, “Synthesis, characterization and antimicrobial studies on metal complexes with a naphthofuran thiosemicarbazide derivatives,” Journal of Coordination Chemistry, vol. 59, no. 16, pp. 1847–1856, 2006.
[8]  S. N. Aslam, P. C. Stevenson, T. Kokubun, and D. R. Hall, “Antibacterial and antifungal activity of cicerfuran and related 2-arylbenzofurans and stilbenes,” Microbiological Research, vol. 164, no. 2, pp. 191–195, 2009.
[9]  C. Ryu, A. Song, J. Y. Lee, J. Hong, J. H. Yoon, and A. Kim, “Synthesis and antifungal activity of benzofuran-5-ols,” Bioorganic & Medicinal Chemistry Letters, vol. 22, pp. 6777–6780, 2010.
[10]  B. F. Abdel-Wahab, H. A. Abdel-Aziz, and E. M. Ahmed, “Synthesis and antimicrobial evaluation of 1-(benzofuran-2-yl)-4-nitro-3-arylbutan-1-ones and 3-(benzofuran-2-yl)-4,5-dihydro-5-aryl-1-[4-(aryl)-1,3-thiazol-2-yl]-1H-pyrazoles,” European Journal of Medicinal Chemistry, vol. 44, no. 6, pp. 2632–2635, 2009.
[11]  X. Jiang, W. Liu, W. Zhang et al., “Synthesis and antimicrobial evaluation of new benzofuran derivatives,” European Journal of Medicinal Chemistry, vol. 46, no. 8, pp. 3526–3530, 2011.
[12]  C. Kirilmis, M. Ahmedzade, S. Servi, M. Koca, A. Kizirgil, and C. Kazaz, “Synthesis and antimicrobial activity of some novel derivatives of benzofuran: part 2. The synthesis and antimicrobial activity of some novel 1-(1-benzofuran-2-yl)-2-mesitylethanone derivatives,” European Journal of Medicinal Chemistry, vol. 43, no. 2, pp. 300–308, 2008.
[13]  K. Manna and Y. K. Agrawal, “Design, synthesis, and antitubercular evaluation of novel series of 3-benzofuran-5-aryl-1-pyrazolyl-pyridylmethanone and 3-benzofuran-5-aryl-1-pyrazolylcarbonyl-4-oxo-naphthyridin analogs,” European Journal of Medicinal Chemistry, vol. 45, no. 9, pp. 3831–3839, 2010.
[14]  M. Br?ndvang, V. Bakken, and L. Gundersen, “Synthesis, structure, and antimycobacterial activity of 6-[1(3H)-isobenzofuranylidenemethyl]purines and analogs,” Bioorganic & Medicinal Chemistry, vol. 17, no. 18, pp. 6512–6516, 2009.
[15]  S. M. Bakunova, S. A. Bakunov, T. Wenzler et al., “Synthesis and in vitro antiprotozoal activity of bisbenzofuran cations,” Journal of Medicinal Chemistry, vol. 50, no. 23, pp. 5807–5823, 2007.
[16]  K. M. Zareba, “Dronedarone: a new antiarrhythmic agent,” Drugs of Today, vol. 42, no. 2, pp. 75–86, 2006.
[17]  S. Chatterjee, J. Ghosh, E. Lichstein, S. Aikat, and D. Mukherjee, “Meta-analysis of cardiovascular outcomes with Dronedarone in patients with atrial fibrillation or heart failure,” American Journal of Cardiology, vol. 110, no. 4, pp. 607–613, 2012.
[18]  L. Alvey, S. Prado, V. Huteau et al., “A new synthetic access to furo[3,2-f]chromene analogues of an antimycobacterial,” Bioorganic and Medicinal Chemistry, vol. 16, no. 17, pp. 8264–8272, 2008.
[19]  V. N. Telvekar, A. Belubbi, V. K. Bairwa, and K. Satardekar, “Novel N′-benzylidene benzofuran-3-carbohydrazide derivatives as antitubercular and antifungal agents,” Bioorganic & Medicinal Chemistry Letters, vol. 22, no. 6, pp. 2343–2346, 2012.
[20]  H. Mastubara, Botyk K Ogaku, vol. 19, p. 15, 1954.
[21]  M. Forbes, F. Zilliikan, G. Gyorgy, and P. Gyorgy, “A new antioxidant from yeast. Isolation and chemical studies,” Journal of the American Chemical Society, vol. 80, no. 2, pp. 385–389, 1985.
[22]  Shashidhar, K. Shivakumar, P. V. Reddy, and M. B. Halli, “Synthesis and spectroscopic characterization of metal complexes with naphthofuran-2-carbohydrazide Schiff's base,” Journal of Coordination Chemistry, vol. 60, no. 3, pp. 243–256, 2007.
[23]  M. B. Halli, Shashidhar, and Z. S. Quresi, “Synthesis, spectral studies, and biological activity of metal complexes of benzofuran thiosemicarbazides,” Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, vol. 34, no. 10, pp. 1755–1768, 2004.
[24]  K. Shivakumar, Shashidhar, P. Vittalareddy, and M. B. Halli, “Synthesis, spectral characterization and biological activity of benzofuran Schiff bases with Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) complexes,” Journal of Coordination Chemistry, vol. 61, no. 14, pp. 2274–2287, 2008.
[25]  Y. Kawas, M. Nakayma, and P. Tamatskuri, “Synthetic studies on the benzofuran derivatives. VII. A new synthesis of angelicin and 4-methylangelicin,” Bulletin of the Chemical Society of Japan, vol. 35, no. 1, pp. 149–151, 1962.
[26]  C. Perez, M. Paul, and p. Bazerque, “An antibiotic assay by the agar well diffusion method,” Acta Biologiae et Medicinae Experimentalis, vol. 15, pp. 113–115, 1990.
[27]  R. Nair, T. Kalyariya, and S. Chanda, “Antibacterial activity of some selected Indian medicinal flora,” Turkish Journal of Biology, vol. 29, pp. 41–47, 2005.
[28]  P. Murali Krishna, K. Hussain Reddy, J. P. Pandey, and S. Dayananda, “Synthesis, characterization, DNA binding and nuclease activity of binuclear copper(II) complexes of cuminaldehyde thiosemicarbazones,” Transition Metal Chemistry, vol. 33, no. 5, pp. 661–668, 2008.
[29]  B. Singh, P. Shahi, and P. K. Singh, Indian Journal of Chemistry A, vol. 35, p. 494, 1996.
[30]  I. S. Ahuja and R. Singh, Journal of the Indian Chemical Society, vol. 78, p. 39, 2001.
[31]  W. J. Geary, “The use of conductivity measurements in organic solvents for the characterisation of coordination compounds,” Coordination Chemistry Reviews, vol. 7, no. 1, pp. 81–122, 1971.
[32]  B. N. Figgis and J. Lewis, “The magnetic properties of transition metal complexes,” in Progress in Inorganic Chemistry, F. A. Cotton, Ed., Interscience, New York, NY, USA, 1964.
[33]  N. N. Jha and I. P. Ray, “Magnetic studies on Co(II) and Ni(II) complexes of hydroxamic acid,” Asian Journal of Chemistry, vol. 12, no. 3, pp. 703–706, 2000.
[34]  D. H. Sutaria, J. R. Patel, and M. N. Patel, “Magnetic, spectral, thermal and electrical properties of new coordination polymers,” Journal of the Indian Chemical Society, vol. 73, no. 7, pp. 309–312, 1996.
[35]  Z. Y. Yang, “Synthesis, characterization, and biological activity of rare earth complexes of 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone benzoylhydrazone,” Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, vol. 32, no. 5, pp. 903–912, 2002.
[36]  K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, John Wiley and Sons, New York, NY, USA, 4th edition, 1986.
[37]  A. B. P. Lever, Inorganic Electronic Spectroscopy, Elsevier, New York, NY, USA, 1984.
[38]  H. Sacconi and G. Speroni, “Structure mimicry in solid solutions of 3d metal complexes with N-methylsalicylaldimine (Msal-Me),” Journal of the American Chemical Society, vol. 87, no. 14, pp. 3102–3106, 1965.
[39]  R. Neiman and D. Kivelson, “ESR line shapes in glasses of copper complexes,” The Journal of Chemical Physics, vol. 35, no. 1, pp. 149–155, 1961.
[40]  N. Nawar, M. A. Khattab, M. M. Bekheit, and A. H. El-Kaddah, “Synthesis and spectral studies of manganese(II), cobalt(II), nickel(II), copper(II), zinc(II), cadmium(II) and mercury(II) complexes of 4-oxo-4H-1-benzopyran-3-carboxaldehyde hydrazone derivatives,” Indian Journal of Chemistry A, vol. 35, no. 4, pp. 308–312, 1996.
[41]  S. M. Mamodoush, S. M. Abou Elenein, and H. M. Kamel, “Study of the critical behavior of polar fluids by renormalization group theory,” Indian Journal of Chemistry A, vol. 41, no. 2, pp. 297–302, 2002.
[42]  Syamal and R. L. Dutta, Elements of Magneto Chemistry, East-West Press, New Delhi, India, 1993.
[43]  R. C. Chikate, A. R. Belapure, S. B. Padhye, and D. X. West, “Transition metal quinone-thiosemicarbazone complexes 1: evaluation of EPR covalency parameters and redox properties of pseudo-square-planar copper(II)-naphthoquinone thiosemicarbazones,” Polyhedron, vol. 24, no. 8, pp. 889–899, 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133