全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Synthesis, Characterization, and Photophysical Studies of Some Novel Ruthenium(II) Polypyridine Complexes Derived from Benzothiazolyl hydrazones

DOI: 10.1155/2013/212435

Full-Text   Cite this paper   Add to My Lib

Abstract:

A series of five benzothiazolylhydrazone ligands 3a–3e and their seven novel Ru(II) polypyridine complexes 4a–4d, 5a, 5d, 5e of the type [Ru(N–N)2(L)]Cl2, where (N–N)2 is 2,2′-bipyridine (bpy)2 or 1,10-phenanthroline (phen)2 and (L) is ligands 3a–3e, have been synthesized and characterized by elemental analysis, IR, 1H NMR, electronic absorption, and emission spectral studies. The interpretation of the analytical data revealed that the ligands coordinate with the metal ion in a bidentate fashion through azomethine nitrogen and phenolic oxygen to form complexes. These ligands and complexes also exhibit absorption and luminescence properties. 1. Introduction In the last two decades, Ru(II) complexes have been widely studied in the field of inorganic chemistry [1–5]. The polypyridine complexes of Ru(II) have been studied extensively with the point of interest being their rich and well characterized photophysics [6, 7]. In recent years, transition metal complexes have been used extensively in the fore front of fields such as probes of DNA structure, DNA-dependent electron transfer, and site-specific DNA cleavage [8–10]. The area of metal complexes with hydrazones has been investigated intensively during the last years regarding their pharmacological applications such as tuberculostatic, antitumor, antibacterial, and antifungal agents [10–12]. The thiazole and benzothiazole hydrazone represent a very interesting class of ligands, due to additional donor sites: nitrogen, sulphur, or oxygen atom which introduce a wide range in their coordinative and pharmaceutical properties [10, 13–15]. In the context of this, we synthesized and characterized five ligands 2-(2′-hydroxy-3′-iodo-5′-chloro acetophenyl) benzothiazolylhydrazone 3a, 2-(2′,4′-dihydroxy acetophenyl) benzothiazolylhydrazone 3b, 2-(2′,5′-dihydroxy acetophenyl) benzothiazolylhydrazone 3c, 2-(2′-hydroxy-5′-chloro acetophenyl) benzothiazolylhydrazone 3d, 2-(2′-hydroxy-4′-methyl-5′-chloro acetophenyl) benzothialylhydrazone 3e, and their seven Ru(II) polypyridine complexes: [Ru(bpy)23a]Cl2??4a, [Ru(bpy)23b]Cl2??4b, [Ru(bpy)23c]Cl2??4c, [Ru(bpy)23d]Cl2??4d, [Ru(phen)23a]Cl25a, [Ru(phen)23d]Cl2??5d, and [Ru(phen)23e]Cl2??5e. 2. Experimental 2.1. Materials and Methods All reagents and solvents were purchased commercially and were used as received. 2-Mercaptobenzothiazole, hydrazine hydrate, acetophenone, and RuCl3?·?3H2O were obtained from SD Fine-chem limited (India). The compounds 3a–3e [13], [Ru(bpy)2Cl2]?·?nH2O and [Ru(phen)2Cl2]?·?nH_2 O, and the metal complexes 4a–4d, 5a, 5d, and 5e [16] were synthesized

References

[1]  P. Desjardins, P. A. Glenn, and J. Robert, “Tetrakis (pyridine) ruthenium trans complexes of Phenyl cyanamide ligands:? crystallography, electronic absorption spectroscopy, and cyclic voltammetry,” Journal of Inorganic Chemistry, vol. 38, no. 25, pp. 5901–5905, 1999.
[2]  D. Hesek, Y. Inoue, S. R. L. Everitt, H. Ishida, M. Kunieda, and M. G. B. Drew, “Diastereoselective preparation and characterization of ruthenium bis(bipyridine) sulfoxide complexes,” Inorganic Chemistry, vol. 39, no. 2, pp. 317–324, 2000.
[3]  T. Suzuki, T. Kuchiyama, S. Kishi, S. Kaizaki, H. D. Takagi, and M. Kato, “Ruthenium(II) complexes containing 8-(dimethylphosphino)quinoline (Me2Pqn): preparation, crystal structures, and electrochemical and spectroscopic properties of [Ru(bpy or phen)3-n(Me2Pqn)n] (PF6)2 (bpy = 2,2′-bipyridine; phen = 1,10-phenanthroline; n = 1, 2, or 3),” Inorganic Chemistry, vol. 42, no. 3, pp. 785–795, 2003.
[4]  J.-P. Sauvage, J.-P. Collin, J.-C. Chambron et al., “Ruthenium(II) and osmium(II) bis(terpyridine) complexes in covalently-linked multicomponent systems: synthesis, electrochemical behavior, absorption spectra, and photochemical and photophysical properties,” Chemical Reviews, vol. 94, no. 4, pp. 993–1019, 1994.
[5]  A. O. Adeloye, “Synthesis, photophysical and electrochemical properties of a mixed bipyridyl-phenanthrolyl ligand Ru(II) heteroleptic complex having trans-2-Methyl-2-butenoic acid functionalities,” Molecules, vol. 16, no. 10, pp. 8353–8367, 2011.
[6]  M. Galletta, F. Puntoriero, S. Campagna et al., “Absorption spectra, photophysical properties, and redox behavior of ruthenium(II) polypyridine complexes containing accessory dipyrromethene-BF2 chromophores,” Journal of Physical Chemistry A, vol. 110, no. 13, pp. 4348–4358, 2006.
[7]  A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser, and A. von Zelewsky, “Ru(II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence,” Coordination Chemistry Reviews, vol. 84, pp. 85–277, 1988.
[8]  S. P. Foxon, C. Green, M. G. Walker et al., “Synthesis, characterization, and DNA binding properties of ruthenium(II) complexes containing the redox active ligand benzo[i]dipyrido[3,2- a: 2′,3′-c]phenazine-11,16-quinone,” Inorganic Chemistry, vol. 51, no. 1, pp. 463–471, 2012.
[9]  M. S. Deshpande, A. A. Kumbhar, A. S. Kumbhar et al., “Ruthenium(II) complexes of bipyridine-glycoluril and their interactions with DNA,” Bioconjugate Chemistry, vol. 20, no. 3, pp. 447–459, 2009.
[10]  L. N. Suvarapu, Y. K. Seo, S. O. Baek, and V. R. Ammireddy, “Review on analytical and biological applications of hydrazones and their metal complexes,” E-Journal of Chemistry, vol. 9, no. 3, pp. 1288–1304, 2012.
[11]  L. Mitu, M. Ilis, N. Raman, M. Imran, and S. Ravichandran, “Transition metal complexes of isonicotinoyl-hydrazone-4- diphenylaminobenzaldehyde: synthesis, characterization and antimicrobial studies,” E-Journal of Chemistry, vol. 9, no. 1, pp. 365–372, 2012.
[12]  R. K. Mohapatra, U. K. Mishra, S. K. Mishra, A. Mahapatra, and D. C. Dash, “Synthesis and characterization of transition metal complexes with benzimidazolyl-2-hydrazones of o-anisaldehyde and furfural,” Journal of the Korean Chemical Society, vol. 55, no. 6, pp. 926–931, 2011.
[13]  R. K. Mohapatra, M. P. Dash, S. B. Joshi, et al., “Synthesis and spectral characterization of transition metal complexes with benzothiazolyl-2-hydrazones of salicylidene acetone and salicylidene acetophenone,” Acta Chimica & Pharmaceutica Indica, vol. 2, p. 156, 2012.
[14]  C. Anitha, S. Sumathi, P. Tharmaraj, et al., “Synthesis, characterization, and biological activity of some transition metal complexes derived from novel hydrazone azo schiff base ligand,” International Journal of Inorganic Chemistry, vol. 2011, Article ID 493942, 8 pages, 2011.
[15]  M. Cǎlinescu, E. Ion, and A.-M. Stadler, “Studies on nickel(II) complex compounds with 2-benzothiazolyl hydrazones,” Revue Roumaine de Chimie, vol. 53, no. 10, pp. 903–909, 2008.
[16]  B. P. Sullivan, D. J. Salmon, and T. J. Meyer, “Mixed phosphine 2,2′-bipyridine complexes of ruthenium,” Inorganic Chemistry, vol. 17, no. 12, pp. 3334–3341, 1978.
[17]  K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, John Wiley & Sons, New York, NY, USA, 4th edition, 1986.
[18]  M. R. Maurya, N. Agarwal, and S. Khurana, “Synthesis and characterization of metal complexes of methylene bridged hexadentate tetraanionic ligands,” Indian Journal of Chemistry A, vol. 39, no. 10, pp. 1093–1097, 2000.
[19]  Z. H. Peng, X. M. Ren, C. J. Fang, B. G. Zhang, and J. T. Suen, “Synthesis and spectroscopic characterization of transition metal complexes of maleionitriledithiolene and 1,10-phenanthroline,” Chinese Chemical Letters, vol. 10, no. 3, pp. 263–266, 1999.
[20]  N. Raman and S. Sobha, “Synthesis, characterization, DNA interaction and antimicrobial screening of isatin-based polypyridyl mixed-ligand Cu(II) and Zn(II) complexes,” Journal of the Serbian Chemical Society, vol. 75, no. 6, pp. 773–788, 2010.
[21]  R. Prajapati, V. K. Yadav, S. K. Dubey, B. Durham, and L. Mishra, “Reactivity of metal (ZnII, RuII)-2,2′-bipyridyl with some bifunctional ligands,” Indian Journal of Chemistry A, vol. 47, no. 12, pp. 1780–1786, 2008.
[22]  M. M. H. Khalil, E. H. Ismail, G. G. Mohamed, E. M. Zayed, and A. Badr, “Synthesis and characterization of a novel schiff base metal complexes and their application in determination of iron in different types of natural water,” Open Journal of Inorganic Chemistry, vol. 2, no. 2, pp. 13–21, 2012.
[23]  M. S. Nair, D. Arish, and R. S. Joseyphus, “Synthesis, characterization, antifungal, antibacterial and DNA cleavage studies of some heterocyclic Schiff base metal complexes,” Journal of Saudi Chemical Society, vol. 16, no. 1, pp. 83–88, 2012.
[24]  H. N. Aliyu and U. Sani, “Synthesis, characterization and biological activity of manganese(II), iron(II), cobalt(II), nickel(II) and copper(II) schiff base complexes against multidrug resistant bacterial and fungal pathogens,” International Research Journal of Pharmacy and Pharmacology, vol. 2, p. 40, 2012.
[25]  W. H. Hegazy and M. Gaafar, “Synthesis, characterization and antibacterial activities of new Pd(II) and Pt(IV) complexes of some unsymmetrical tetradentate schiff bases,” American Chemical Science Journal, vol. 2, no. 3, p. 86, 2012.
[26]  R. M. Silverstine, G. C. Bausler, T. C. Morill, et al., Spectroscopic Identification of Organic Compounds, John Wiley & Sons, New York, NY, USA, 5th edition, 1991.
[27]  T. Sofia, B. Mahdi, N. Hossein, et al., “Synthesis, characterization, and biological studies of new ruthenium polypyridine complexes containing noninnocent ligand,” ISRN Inorganic Chemistry, vol. 2013, Article ID 623962, 6 pages, 2013.
[28]  M. S. Deshpande and A. S. Kumbhar, “Mixed-ligand complexes of ruthenium(II) incorporating a diazo ligand: synthesis, characterization and DNA binding,” Journal of Chemical Sciences, vol. 117, no. 2, pp. 153–159, 2005.
[29]  J. Karolin, L. B.-A. Johansson, L. Strandberg, and T. Ny, “Fluorescence and absorption spectroscopic properties of dipyrrometheneboron difluoride (BODIPY) derivatives in liquids, lipid membranes, and proteins,” Journal of the American Chemical Society, vol. 116, no. 17, pp. 7801–7806, 1994.
[30]  D. Arish and M. S. Nair, “Synthesis, characterization and biological studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes with pyrral-l-histidinate,” Arabian Journal of Chemistry, vol. 5, no. 2, pp. 179–186, 2012.
[31]  K. K.-W. Lo, W.-K. Hui, C.-K. Chung, K. H.-K. Tsang, T. K.-M. Lee, and D. C.-M. Ng, “Luminescent transition metal polypyridine biotin complexes,” Journal of the Chinese Chemical Society, vol. 53, no. 1, pp. 53–65, 2006.
[32]  M. Montalti, A. Credi, L. Prodi, et al., Handbook of Photochemistry, CRC Press, Boca Raton, Fla, USA, 3rd edition, 2006.
[33]  M. Klessinger and J. Michl, Excited States and Photochemistry of Organic Molecules, Wiley-VCH, New York, NY, USA, 1995.
[34]  G. A. Crosby, “Spectroscopic investigations of excited states of transition-metal complexes,” Accounts of Chemical Research, vol. 8, no. 7, pp. 231–238, 1975.
[35]  T. J. Meyer, “Chemical approaches to artificial photosynthesis,” Accounts of Chemical Research, vol. 22, no. 5, pp. 163–170, 1989.
[36]  K. F. Freed and J. Jortner, “Multiphonon processes in the nonradiative decay of large molecules,” The Journal of Chemical Physics, vol. 52, no. 12, pp. 6272–6291, 1970.
[37]  L.-N. Ji, X.-H. Zou, and J.-G. Liu, “Shape- and enantioselective interaction of Ru(II)/Co(III) polypyridyl complexes with DNA,” Coordination Chemistry Reviews, vol. 216-217, pp. 513–536, 2001.
[38]  M. M. A. Sekkina and M. G. A. El-Azm, “Thermochemical analyses of solid isonicotinic hydrazide transition metal complexes,” Thermochimica Acta, vol. 79, pp. 47–53, 1984.
[39]  J. Y. Lu, M. A. Lawandy, and J. Li, “A new type of two-dimensional metal coordination systems: Hydrothermal synthesis and properties of the first oxalate-BPY mixed-ligand framework∞2[M(ox)(bpy)] (M = Fe(II), Co(II), Ni(II), Zn(II); ox = ; bpy = 4,4′-bipyridine),” Inorganic Chemistry, vol. 38, no. 11, pp. 2695–2704, 1999.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133