Two new cobalt(II) complexes of formula [Co(hfac)2(NITphtrz) 1 and Co(hfac)2(IMphtrz) 2] have been prepared and characterized structurally [where NITphtrz = 4,4,5,5-tetramethyl-2-(2-phenyl-1,2,3-triazole-4-yl)imidazoline-1-oxyl-3-oxide and IMphtrz = 4,4,5,5-tetramethyl-2-(2-phenyl-1,2,3-triazole-4-yl)imidazoline-1-oxyl]. All of the complexes crystallize in an isomorphous triclinic space group with the Co(II) ion octahedrally coordinated via the bidentate chelating mode. The magnetic measurements show that two complexes exhibit antiferromagnetic interactions between the metal ions and the nitroxide radicals. 1. Introduction Metal-radical complexes have been well investigated toward molecule-based magnets, where a radical center is directly bonded to the metal ion and affording appreciable magnetic exchange coupling [1]. The predominant magnetic features of metal-nitroxide complexes are determined by the donor properties of the nitronyl group and the coordination geometry of the resulting complex. In the past decades, growing interest has been paid to metal complexes with nitronyl nitroxide (NITR: 4,4,5,5-tetramethyl-2-R-imidazolin-1-oxyl-3-oxide) and imino nitroxide (IMR: 4,4,5,5-tetramethyl-2-R-imidazolin-1-oxyl) radicals [2–5]. The feature of R-group linked to the nitronyl nitroxide not only influences the intermolecular spin-spin interactions but also affects the coordination mode of the nitronyl nitroxides with metal ions [6, 7]. Because the auxiliary heteroaromatic N-donor forces the nitroxide O-atom to bind to a poor electrophilic metal center by the chelating effect, the complexes of nitronyl or imino nitroxides substituted by N-heteroaromatic groups have drawn great interests. Cobalt(II) complexes have been rarely investigated due to large spin-orbital coupling, although cobalt(II) is a very effective spin carrier. In order to extend our knowledge of the extremely rich chemistry of such systems, it was thus of interest to further explore the reactions between Co(hfac)2 and nitroxide radicals. In this paper, we will report two new nitroxide ligands L1 and L2 (Scheme 1). Due to the presence of the N-triazole moieties, L1 and L2 can coordinate to metal ions as chelate ligands. Reactions of L1 and L2 with Co(hfac)2 (hfac = hexafluoroacetylacetonate) afforded two heterospin complexes. Crystal structures and magnetic properties of the related compounds (Co(hfac)2(NITphtrz) 1 and Co(hfac)2(IMphtrz) 2) will be described and discussed. Scheme 1 2. Experimental 2.1. Materials and Equipment 2-phenyl-1,2,3-triazole-4-carboxaldehyde was prepared according to
References
[1]
A. Caneschi, D. Gatteschi, R. Sessoli, and P. Rey, “Toward molecular magnets: the metal-radical approach,” Accounts of Chemical Research, vol. 22, no. 11, pp. 392–398, 1989.
[2]
F. M. Romero, D. Luneau, and R. Ziessel, “Structural control of ferromagnetic interactions in Nickel(Ii) complexes based on a tetradentate biradical,” Chemical Communications, vol. 5, pp. 551–552, 1998.
[3]
D. Luneau, G. Risoan, P. Rey et al., “Transition metal derivatives of a chelating nitronyl nitroxide ligand. Nickel(II) and manganese(II) complexes,” Inorganic Chemistry, vol. 32, no. 24, pp. 5616–5622, 1993.
[4]
D. Luneau, P. Rey, J. Laugier et al., “N-bonded copper(II)-imino nitroxide complexes exhibiting large ferromagnetic interactions,” Journal of the American Chemical Society, vol. 113, no. 4, pp. 1245–1251, 1991.
[5]
D. Luneau, P. Rey, J. Laugier, E. Belorizky, and A. Cogne, “Ferromagnetic behavior of nickel(II)-imino nitroxide derivatives,” Inorganic Chemistry, vol. 31, no. 17, pp. 3578–3584, 1992.
[6]
A. Caneschi, D. Gatteschi, and P. Rey, “The chemistry and magnetic properties of metal nitronyl nitroxide complexes,” Progress in Inorganic Chemistry, vol. 39, p. 331, 2007.
[7]
E. Coronado, P. Delhaès, D. Gatteschi, and J. S. Miller, Eds., Molecular Magnetism: from Molecular Assemblies to the Devices, NATO ASI Series E321, Kluwer Academic Publishers, Dodrecht, The Netherlands, 1996.
[8]
Q. Yan, L. Shao, F. M. Liu, and Z. F. Xie, “Synthesis of some new monocyclic β-lactams containing 2-Phenyl-1,2,3-triazolyl,” Chinese Journal of Organic Chemistry, vol. 251, p. 129, 2005.
[9]
F. A. Cotton and R. H. Holm, “Magnetic investigations of spin-free cobaltous complexes. III. On the existence of planar complexes,” Journal of the American Chemical Society, vol. 82, no. 12, pp. 2979–2983, 1960.
[10]
Y. J. Zhang, J. J. Wang, and J. Chen, “Three Nickel(II) and Zinc(II) complexes with two novel nitronyl nitroxide ligands: syntheses, crystal structures, and luminescent properties,” Zeitschrift für Anorganische und Allgemeine Chemie, vol. 638, no. 11, pp. 1849–1854, 2012.
[11]
J. N. Helbert, P. W. Kopf, E. H. Poindexter, and B. E. Wagner, “Complexing and protonation of free-radical imidazolin-1-oxyl and imidazolin-1-oxyl 3-oxide ligands: a magnetic-resonance investigation,” Journal of the Chemical Society, Dalton Transactions, no. 11, pp. 998–1006, 1975.
[12]
Y. X. Yu, H. M. Hu, D. Q. Zhang, Z. Y. Wang, and D. B. Zhu, “Two new nitronyl nitroxide radicals and their complexes with M(hfac)2 [M=Co(II), Ni(II), Mn(II)]: syntheses, crystal structures, and magnetic characterizations,” Chinese Journal of Chemistry, vol. 25, no. 9, pp. 1259–1266, 2007.
[13]
S. Fokin, V. Ovcharenko, G. Romanenko, and V. Ikorskii, “Problem of a wide variety of products in the Cu(hfac)2-nitroxide system,” Inorganic Chemistry, vol. 43, no. 3, pp. 969–977, 2004.