Potentiometric studies in aqueous medium and spectrophotometric study in non-aqueous medium were used to understand the behavior of hexamethylenetetramine (HMTA) complexes. The protometric studies of HMTA enabled us to confirm that only one basic site of this ligand is protonated in acidic medium and this ligand is decomposed in acidic medium. In aqueous medium, only hexa-aqua complexes in which HMTA is present in the second coordination sphere forming H-bonds with hydrogen atoms of coordinated and uncoordinated water molecules are obtained. In non-aqueous solvents, HMTA coordinates to metal ions displaying diversity in the structures of the resulting complexes in which HMTA can either be monodentate, bridged bidentate, tridentate, or tetradentate. 1. Introduction Hexamethylenetetramine (HMTA) is a heterocyclic ligand with four nitrogen donor atoms, having three rings merged in a chair conformation as shown in Figure 1. Figure 1: Structure of hexamethylenetetramine. HMTA can therefore form various metal complexes possessing interesting structural features and applications [1–5]. Hexamethylenetetramine as a ligand can bind either in a monodentate manner to a metal [6, 7], acting as bridging ligand linking two, three, or four metals [8–11], or bind to metal-containing species through the formation of hydrogen bonding [5, 12–16]. The combination of both covalent and hydrogen bonding in certain complexes of hexamethylenetetramine leads to the formation of three-dimensional structures that easily decompose by thermal treatment to give thin films of metal oxides [15, 16]. The formation of covalently bonded and hydrogen-bonded compounds of hexamethylenetetramine is influenced by several factors such as the nature of the solvent, steric hindrance of the counter ion, and the pH of the solution [17]. When water is used as the solvent during synthesis, metal-aqua complexes are obtained which bind to HMTA through H-bonds, forming ionic species [18]. When non-aqueous solvents are used for synthesis, metal-HMTA covalent species are formed [10, 15]. Recently, we reported the isolation of metal-HMTA covalently bonded species isolated from ethanol [19]. Metal-H2O-HMTA ionic species involving H-bonds isolated from ethanol/water mixture have also been reported [5, 12–16, 20]. We report here the results of the study on the influence of solvent on the electronic and structural properties of metal-HMTA complexes in aqueous and non-aqueous solvents. 2. Experimental 2.1. Chemicals All solvents were purified by conventional procedures [21] and distilled prior to use. All the
References
[1]
K. S. Patel and M. O. Agwara, “Hexamethlenetetraamine complexes of divalent metal sulphates,” Nigerian Journal of Science, vol. 24, article 57, 1990.
[2]
M. O. Agwara, P. T. Ndifon, and M. K. Ndikontar, “Physicochemecal studies of some hexamethylenetetramine metal(II) complexes,” Bulletin of the Chemical Society of Ethiopia, vol. 18, no. 2, pp. 143–148, 2004.
[3]
O. S. Polezhaeva, N. V. Yaroshinskaya, and V. K. Ivanov, “Formation mechanism of nanocrystalline ceria in aqueous solutions of cerium(III) nitrate and hexamethylenetetramine,” Inorganic Materials, vol. 44, no. 1, pp. 51–57, 2008.
[4]
X. J. Yao, Y. W. Xuan, and W. Wu, “Hexaaquazinc(II) dichloride bis(hexamethylenetetramine) tetrahydrate,” Acta Crystallographica, vol. E64, Article ID m 1132, 2008.
[5]
L. L. Zhan, J. Y. Xin, W. Wen, and X. Ya Wen, “Hexaaquocopper(II)dichloride bis (hexamethylenetetramine) tetrahydrate,” Acta Crystallographica, vol. E64, Article ID m1024, 2008.
[6]
Y. Bai, W.-L. Shang, F. Zhong, X.-J. Pan, and X.-F. Niu, “Aqua(hexamethylenetetramine- N)bis(methanol)bis(thiocyanato- N)nickel(II),” Acta Crystallographica, vol. E63, Article ID m2628, 2007.
[7]
S. Wei-Li, B. Yan, M. Chao-Zhong, and L. Zhi-Min, “Aqua(hexamethylenetetramine- N)bis(methanol- O)bis(thiocyanato- N)cobalt(II),” Acta Crystallographica, vol. E64, pp. m1184–m1185, 2008.
[8]
I. S. Ahuja, C. L. Yadav, and S. Tripathi, “Coordination polymers of some uranyl salts involving 4, 4-bipyridyl, 4, 4-bipyridyl N, N-dioxide, 1,3-bis (4-pyridyl) propane and hexamethylenetetramine,” Asian Journal of Chemistry, vol. 1, pp. 195–207, 1989.
[9]
M. K. Ammar, T. Jouini, and A. Driss, “Synthesis and structural characterization of dihexamethylenetetraminetetraaquocobalt(II) hexaaquocobalt(II) sulfate hexahydrate,” Journal of Chemical Crystallography, vol. 30, no. 4, pp. 265–268, 2000.
[10]
A. Ray, J. Chakraborty, B. Samanta et al., “Two new hydrothermally synthesised hexamine bridged L-M-L type coordination polymers: characterisation and magneto-structural correlation,” Inorganica Chimica Acta, vol. 361, no. 7, pp. 1850–1860, 2008.
[11]
Y. Chen, Y.-L. Wang, S.-M. Ying, and S.-L. Cai, “Poly[di-μ2-chlorido-μ4-hexa-methyl-ene-tetra- mine-bis-[chlorido(methanol-κO)-cadmium(II)],” Acta Crystallographica Section E, vol. 63, no. 11, Article ID m2751, 2007.
[12]
T. Trzesowska and R. Kruszynski, “The synthesis, crystal structure and thermal studies of a mixed-ligand 1,10-phenanthroline and hexamethylenetetramine complex of lanthanum nitrate. Insight into coordination sphere geometry changes of lanthanide(III) 1,10-phenanthroline complexes,” Transition Metal Chemistry, vol. 32, no. 5, pp. 625–633, 2007.
[13]
X.-L. Li, D.-Z. Niu, and Z.-S. Lu, “Tetraaquabis(thiocyanato-kN)cobalt(II) hexamethylenetetramine (1/2) cocrystal,” Acta Crystallographica Section E, vol. 63, no. 10, Article ID m2478, 2007.
[14]
P. Dagur, D. Chopra, A. S. Prakash, T. N. Guru Row, and M. S. Hegde, “Synthesis, characterization and structure of [Ni(H2O)6]2(Cr2O7)2(hmta)4·2H2O (hmta=hexamethylenetetramine): a novel metal organic-inorganic hybrid,” Journal of Crystal Growth, vol. 275, no. 1-2, pp. e2043–e2047, 2005.
[15]
S. Banerjee, A. R. Choudhury, T. N. Guru Row, S. Chaudhuri, and A. Ghosh, “Three-dimensional supramolecular H-bonding network in the compounds containing hexamethylenetetramine and aquated Ni(II) or Cd(II) salts,” Polyhedron, vol. 26, no. 1, pp. 24–32, 2007.
[16]
G. Singh, B. P. Baranwal, I. P. S. kapoor, D. Kumar, C. P. Singh, and R. Frohlich, “Some transition metal nitrate complexes with hexamethylenetetramine,” Journal of Thermal Analysis and Calorimetry, vol. 91, no. 3, pp. 971–977, 2008.
[17]
P. Afanasiev, S. Chouzier, Tivador et al., “Nickel and cobalt hexamethylentetramine complexes (NO3)2Me(H2O)6(HMTA)2·4H2O (Me = Co2+, Ni2+): new molecular precursors for the preparation of metal dispersions,” Inorganic Chemistry, vol. 47, no. 7, pp. 2303–2311, 2008.
[18]
P. A. Chernasvskii, P. V. Afanas’ev, G. V. Pankina, and N. S. Perov, “Formation of Co nanoparticles in the process of thermal decomposition of the cobalt complex with hexamethylenetetramine (NO3)2Co(H2O)6(HMTA)2·4(H2O),” Russian Journal of Physical Chemistry A, Focus on Chemistry, vol. 82, no. 13, pp. 2176–2181, 2008.
[19]
P. T. Ndifon, M. O. Agwara, A. G. Paboudam et al., “Synthesis, characterisation and crystal structure of a cobalt(II)- hexamethylenetetramine coordination polymer,” Transition Metal Chemistry, vol. 34, no. 7, pp. 745–750, 2009.
[20]
M. O. Agwara, P. T. Ndifon, M. D. Yufanyi, et al., “Synthesis, characterization and crystal structure of an H-bonded nickel(II) hexamethylenetretramine complex,” Rasayan Journal of Chemistry, vol. 13, pp. 207–213, 2010.
[21]
D. Perrin, W. L. F. Armarego, and R. D. Perrin, Purification of Laboratory Chemicals, Pergamon, Oxford, UK, 3rd edition, 1988.
[22]
R. Fournaise and C. Petitfaux, “Etude de la formation des complexes en solution aqueuse-III Nouvelle methode d'affinement des constantes de stabilite des complexes et des autres parametres des titrages protometriques,” Talanta, vol. 34, no. 4, pp. 385–395, 1987.
[23]
R. Fournaise and C. Petitfaux, “Computerized analysis of potentiometric data obtained without any previous standardization and used without any intermediary change into another values,” Analusis, vol. 18, no. 4, pp. 242–249, 1990.
[24]
P. Job, “Formation and stability of inorganic complexes in solution,” Annali di Chimica Applicata, vol. 9, pp. 113–203, 1928.
[25]
V. M. Kostyuchenko, G. A. Kiryukhina, G. I. Mordvinova, and A. S. Lapin, “Study of the condensation products of the alkylphenols with hexamethylenetetramine,” Polymer Science U.S.S.R, vol. 26, no. 5, pp. 1003–1012, 1984.
[26]
A. G. Brolo, M. L. A. Temperini, and S. M. L. Agostinho, “Copper dissolution in bromide medium in the absence and presence of hexamethylenetetramine (HMTA),” Electrochimica Acta, vol. 44, no. 4, pp. 559–571, 1998.
[27]
X. Yawen, W. Wen, and L. Shujing, “Synthesis and crystallographic characterization of a six coordinate Cu(II) complex based on hexamethylenetetramine ligand,” Crystal Research and Technology, vol. 44, no. 1, pp. 127–130, 2009.
[28]
J. O. Jensen, “Vibrational frequencies and structural determinations of hexamethylenetetraamine,” Spectrochimica Acta A, vol. 58, no. 7, pp. 1347–1364, 2002.
[29]
W. L. Shang, B. Yan, M. Chao-Zhong, and Z. M. Li, “Aqua-(hexa-methyl-enetetra-mine-κN)bis-(methanol-κO)bis-(thio-cyanato-κN)cobalt(II),” Acta Crystallographica, vol. E 64, pp. m 1184–m1185, 2008.
[30]
D. L. Sutton, Electronic Spectra of Transition Metal Complexes, McGraw-Hill, London, UK, 1968.
[31]
F. A. Mautner, L. ?hrstr?m, B. Sodin, and R. Vicente, “New topology in azide-bridged cobalt(11) complexes: the weak ferromagnet [Co2(N3)4(HexamethylenetetramineKH2O)]n,” Inorganic Chemistry, vol. 48, no. 13, pp. 6280–6286, 2009.
[32]
L. Carlucci, G. Ciani, D. M. Proserpio, and A. Seroni, “A novel 3D three-connected cubic network containing [Ag6(hmt)6]6+ hexagonal units (hmt = Hexamethylenetetramine),” Inorganic Chemistry, vol. 36, no. 9, pp. 1736–1737, 1997.