The kinetics of the oxidation of naphthol green B (NGB3?) by peroxydisulphate ion has been carried out in aqueous acidic medium at of 700?nm, °C, and ?mol?dm?3 (NaCl). The reaction shows a first-order dependence on oxidant and reductant concentration, respectively. The stoichiometry of the NGB— reaction is 1?:?2. Change in hydrogen ions concentration of the reaction medium has no effect on the rate of the reaction. Added cations and anions decreased the rate of the reaction. The results of spectroscopic and kinetic investigation indicate that no intermediate complex is probably formed in the course of this reaction. 1. Introduction Naphthol green B is used in histology to stain collagen. The dye is a lake, in which the mordant metal is ferric iron. However, the iron appears to play no part in its staining ability [1]. Naphthol green B is very soluble in water and has an absorption maximum of 714?nm. As an anion, it acts as an acid dye [2]. Kinetic spectrophotometric method for the determination of cerium (IV) with naphthol green B has been studied [3]. The reaction was monitored spectrophotometrically by measuring the decrease in absorbance of naphthol green B at 710?nm. It was found that the reaction rate is very slow when the temperature is below 60°C, but the rate of the catalyzed reaction increases rapidly when the reaction temperatures are above 70°C. Peroxydisulphate ion is one of the powerful oxidizing agents known [4, 5]. A large number of investigations have been carried out in the oxidation of metal ions [6, 7], metal complex [8, 9], and various organic compounds [10] by . Most electron transfer reactions of occur by the outer-sphere mechanism [11–13]. However, reactions with some positively charged metal complexes such as Fe , Fe , and Os occur by both the outer-sphere and the inner-sphere mechanisms [5, 9]. Except when the reducing agent can be protonated, the redox reaction of was found to be independent of hydrogen ion concentration [14]. Despite its reactions with other compounds, the redox reaction of this oxidant with naphthol green B is scanty. It is our hope that this investigation will help to gain more insight into the redox reaction of naphthol green B with peroxydisulphate ion. 2. Materials and Methods The chemicals used were of analytical grade and were used without further purification. Standard solution of was prepared by dissolving 0.088?g in 100?cm3 volumetric flask using distilled water. Sodium peroxydisulphate solution was prepared by dissolving known quantities in distilled water. All other reagents used were of analytical
References
[1]
G. Edward, Synthesis Dyes in Biology, Medicine and Chemistry, Academic Press, London, UK, 1971.
[2]
B. Myek, S. O. Idris, and J. F. Iyun, “Kinetics of the oxidation of naphthol green B by periodate ion in aqueous hydrochloric acid medium,” International Journal of Modern Chemistry, vol. 5, no. 2, pp. 127–135, 2013.
[3]
Y. Liu and P. Wang, “Kinetic spectrophotometric method for the determination of cerium(IV) with naphthol green B,” Rare Metals, vol. 28, no. 1, pp. 5–8, 2009.
[4]
J. W. L. Fordham and H. Leverne Williams, “The persulfate-iron(II) initiator system for free radical polymerizations,” Journal of The American Chemical Society, vol. 73, no. 10, pp. 4855–4859, 1951.
[5]
D. H. Irvine, “441. The oxidation of the trisdipyridylosmium(II) ion by the peroxydisulphate ion in aqueous solution,” Journal of the Chemical Society (Resumed), pp. 2166–2170, 1958.
[6]
D. M. Yost and H. H. Clausen, “Reduction of peroxysulfate by vanadyl ion with silver ion as catalyst,” Journal of the American Chemical Society, vol. 53, no. 9, pp. 3349–3354, 1931.
[7]
K. Y. Gupta and D. D. Misra, “The silver ion catalyses oxidation of arsenous acid by S2O82-,” Bulletin of the Chemical Society of Japan, vol. 32, pp. 1306–1309, 1959.
[8]
R. W. Chlebeck and N. W. Lister, “Reaction between alkali metal ferrocyanides and peroxydisulphate in aqueous,” Canadian Journal of Chemistry, vol. 45, pp. 2411–2418, 1967.
[9]
S. Raman and J. H. C. Brubakar, “The kinetics of the oxidation of substituted 2, 2′-bipyridine and 1, 10-phenanthroline complexes of iron (II), with S2O82- ion,” Journal of Inorganic and Nuclear Chemistry, vol. 31, pp. 1091–1201, 1969.
[10]
S. S. Gupta and Y. K. Gupta, “Kinetics and mechanism of the iron(III)-catalyzed oxidation of hydrazine with peroxydisulfate in acid medium,” Inorganic Chemistry, vol. 20, no. 6, pp. 1748–1751, 1981.
[11]
D. E. Pennington and A. Haim, “Kinetics and mechanism of the chromium(II)-catalyzed substitution of iodide ion in the iodopentaaquochromium(III) ion by water and by fluoride, chloride, and bromide ions,” Inorganic Chemistry, vol. 6, no. 12, pp. 2138–2146, 1967.
[12]
K. Ohashi, H. E. Matsuzama, and Yamamato, “The kinetics study of the oxidation reaction of tris-(2, 2′-bypyridine)Cobalt (II) ion and ethylenediamine-N, N, N′, N’tetraacetate(II) ion by S2O82-,” Bulletin of the Chemical Society of Japan, vol. 49, no. 9, pp. 2440–2442, 1976.
[13]
G. A. Ayoko, J. F. Iyun, and I. F. El-Idris, “Electron transfer at tetrahedral cobalt(II), part III: kinetics of copper(II) ion catalysed reduction of periodate,” Transition Metal Chemistry, vol. 17, no. 5, pp. 423–425, 1992.
[14]
K. Y. Gupta and S. Ghosh, “Hydrogen ion dependence of the oxidation of iron(II) with peroxydisulphate in acidic perchlorate solutions,” Inorganic Chemistry, vol. 20, pp. 434–439, 1959.
[15]
Y. Mohammed, J. F. Iyun, and S. O. Idris, “Kinetic approach to the mechanism of the redox reaction of malachite green and permanganate ion in aqueous acidic medium,” African Journal of Pure and Applied Chemistry, vol. 3, no. 12, pp. 269–274, 2009.
[16]
G. Adefikayo Ayoko, J. Femi Iyun, and I. Faskari El-Idris, “Electron transfer at tetrahedral cobalt(II), part II. Kinetics of silver(I) ion catalyzed reduction of peroxydisulphate,” Transition Metal Chemistry, vol. 17, pp. 46–49, 1992.
[17]
S. S. Gupta and Y. K. Gupta, “Hydrogen ion dependence of the oxidation of iron(II) with peroxydisulphate in acidic perchlorate solutions,” Inorganic Chemistry, vol. 20, pp. 434–439, 1981.
[18]
P. Banerjee and P. M. Pujara, “The kinetics of oxidation of N(2-hydroxyl)ethylenediamminetetraacetatecobaltate(II) by S2O82- in aqueous acidic solution,” Transition Metal Chemistry, vol. 6, pp. 47–54, 1981.
[19]
P. S. V. Rao, P. S. N. Murty, and L. A. N. Murty, “Kinetic and mechanism of indigo carmine with peroxydisulphate,” Journal of the Chemical Society, vol. 60, p. 1180, 1978.
[20]
T. J. Mayer and H. Taube, Comprehensive Coordination Chemistry: The Synthesis, Reaction, Properties and Application of Coordination Compounds, Pergamon Press, London, UK, 1987.