Palmitoylethanolamide (PEA) is a food component known since 1957. PEA is synthesized and metabolized in animal cells via a number of enzymes and exerts a multitude of physiological functions related to metabolic homeostasis. Research on PEA has been conducted for more than 50 years, and over 350 papers are referenced in PubMed describing the physiological properties of this endogenous modulator and its pharmacological and therapeutical profile. The major focus of PEA research, since the work of the Nobel laureate Levi-Montalcini in 1993, has been neuropathic pain states and mast cell related disorders. However, it is less known that 6 clinical trials in a total of nearly 4000 people were performed and published last century, specifically studying PEA as a therapy for influenza and the common cold. This was done before Levi-Montalcini’s clarification of PEA’s mechanism of action, analyzing the role of PEA as an anti-inflammatory agent. We will review in depth these studies, as the results support the effectiveness and safety of PEA in flu and respiratory infections. 1. Introduction Palmitoylethanolamide (PEA) is a food component known for more than 50 years. PEA is synthesized and metabolized by different animal cell types and also present in plants. It exerts a multitude of physiological functions related to metabolic and cellular homeostasis. PEA was already identified in the 50s of the last century as a therapeutic substance with potent anti-inflammatory properties. Since 1970, the anti-inflammatory and other immune-modulating properties of PEA have been shown in a number of placebo-controlled double-blind clinical trials on influenza and common cold. Positive results coincided with the clinical use of PEA in former Czechoslovakia under the brand name Impulsin. Since 2008, PEA has been marketed as a food for special medical purposes in Italy and Spain, under the brand name Normast (Epitech Srl). Recently, a food-supplement named PeaPure was introduced (JP Russell Science Ltd.). In the USA, PEA is under evaluation as a nutraceutical for inflammatory bowel syndrome (proposed brand name Recoclix, CM&D Pharma Ltd.; Nestlé). Research on PEA has been conducted since its discovery and over 350 papers are referenced in PubMed describing its physiological properties and role as endogenous modulator as well as its pharmacological and therapeutic effects. PEA is an interesting anti-inflammatory therapeutic substance and might also hold great promise for the treatment of a number of (auto)immune disorders, including inflammatory bowel disease and inflammatory
References
[1]
A. F. Coburn and L. V. Moore, “The prophylactic use of sulfanilamide in streptococcal respiratory infections, with especial reference to rheumatic fever,” Journal of Clinical Investigation, vol. 18, pp. 147–155, 1939.
[2]
A. Coburn, “The concept of egg yolk as a dietary inhibitor to rheumatic susceptibility,” The Lancet, vol. 275, no. 7129, pp. 867–870, 1960.
[3]
A. F. Coburn, C. E. Graham, and J. Haninger, “The effect of egg yolk in diets on anaphylactic arthritis (passive Arthus phenomenon) in the guinea pig,” The Journal of Experimental Medicine, vol. 100, pp. 425–435, 1954.
[4]
D. A. Long and A. J. P. Martin, “Factor in arachis oil depressing sensitivity to tuberculin in B.C.G.-infected guineapigs,” The Lancet, vol. 267, no. 6921, pp. 464–466, 1956.
[5]
O. H. Ganley and H. J. Robinson, “Antianaphylactic and antiserotonin activity of a compound obtained from egg yolk, peanut oil, and soybean lecithin,” Journal of Allergy, vol. 30, no. 5, pp. 415–419, 1959.
[6]
F. A. Kuehl Jr., T. A. Jacob, O. H. Ganley, R. E. Ormond, and M. A. P. Meisinger, “The identification of N-(2-hydroxyethyl)-palmitamide as a naturally occurring anti-inflammatory agent,” Journal of the American Chemical Society, vol. 79, no. 20, pp. 5577–5578, 1957.
[7]
G. H. Stollerman, “Alvin F. Coburn, 1899–1975,” Journal of Infectious Diseases, vol. 133, no. 5, p. 595, 1976.
[8]
O. H. Ganley, O. E. Graessle, and H. J. Robinson, “Anti-inflammatory activity of compounds obtained from egg yolk, peanut oil, and soybean lecithin,” The Journal of Laboratory and Clinical Medicine, vol. 51, no. 5, pp. 709–714, 1958.
[9]
N. R. Bachur, K. Masek, K. L. Melmon, and S. Udenffiend, “Fatty acid amides of ethanolamine in mammalian tissues,” The Journal of Biological Chemistry, vol. 240, pp. 1019–1024, 1965.
[10]
F. Benvenuti, F. Lattanzi, A. de Gori, and P. Tarli, “Activity of some derivatives of palmitoylethanolamide on carragenine-induced edema in the rat paw,” Bollettino Della Societa Italiana di Biologia Sperimentale, vol. 44, no. 9, pp. 809–813, 1968.
[11]
F. Perlík, H. Rasková, and J. Elis, “Anti-inflammatory properties of N(2-hydroxyethyl) palmitamide,” Acta Physiologica Academiae Scientiarum Hungaricae, vol. 39, no. 4, pp. 395–400, 1971.
[12]
F. Perlik, J. Krej?í, J. Elis, J. Pekárek, and J. ?vejcar, “The effect of N-(2-hydroxyethyl)-palmitamide on delayed hypersensitivity in guinea-pig,” Experientia, vol. 29, no. 1, pp. 67–68, 1973.
[13]
K. Masek, F. Perlik, J. Klima, and R. Kahlich, “Prophylactic efficacy of N 2 hydroxyethyl palmitamide (Impulsin) in acute respiratory tract infections,” European Journal of Clinical Pharmacology, vol. 7, no. 6, pp. 415–419, 1974.
[14]
R. Kahlich, J. Klima, F. Cihla, et al., “Studies on prophylactic efficacy of N-2-hydroxyethyl palmitamide (Impulsin) in acute respiratory infections. Serologically controlled field trials,” Journal of Hygiene Epidemiology Microbiology and Immunology, vol. 23, no. 1, pp. 11–24, 1979.
[15]
V. Plesnik, M. Havrlantova, J. Jancova, J. Januska, and O. Macková, “Impulsin in the prevention of acute respiratory diseases in school children,” Ceskoslovenská Pediatrie, vol. 32, pp. 365–369, 1977.
[16]
F. Massa, G. Marsicano, H. Hermana et al., “The endogenous cannabinoid system protects against colonic inflammation,” Journal of Clinical Investigation, vol. 113, no. 8, pp. 1202–1209, 2004.
[17]
G. D'Argenio, S. Petrosino, C. Gianfrani et al., “Overactivity of the intestinal endocannabinoid system in celiac disease and in methotrexate-treated rats,” Journal of Molecular Medicine, vol. 85, no. 5, pp. 523–530, 2007.
[18]
R. Sancho, M. A. Calzado, V. di Marzo, G. Appendino, and E. Mu?oz, “Anandamide inhibits nuclear factor-κB activation through a cannabinoid receptor-independent pathway,” Molecular Pharmacology, vol. 63, no. 2, pp. 429–438, 2003.
[19]
L. Aloe, A. Leon, and R. Levi-Montalcini, “A proposed autacoid mechanism controlling mastocyte behaviour,” Agents and Actions, vol. 39, pp. C145–C147, 1993.
[20]
J. M. Keppel Hesselink, “Professor Rita Levi-Montalcini on Nerve Growth Factor, mast cells and palmitoylethanolamide, an endogenous anti-inflammatory and analgesic compound,” Pain and Relief, vol. 2, article 1, 2013.
[21]
R. Levi-Montalcini, S. D. Skaper, R. dal Toso, L. Petrelli, and A. Leon, “Nerve growth factor: from neurotrophin to neurokine,” Trends in Neurosciences, vol. 19, no. 11, pp. 514–520, 1996.
[22]
I. A. Khasabova, Y. Xiong, L. G. Coicou, D. Piomelli, and V. Seybold, “Peroxisome proliferator-activated receptor alpha mediates acute effects of palmitoylethanolamide on sensory neurons,” The Journal of Neuroscience, vol. 32, pp. 12735–12743, 2012.
[23]
J. LoVerme, G. la Rana, R. Russo, A. Calignano, and D. Piomelli, “The search for the palmitoylethanolamide receptor,” Life Sciences, vol. 77, no. 14, pp. 1685–1698, 2005.
[24]
B. Costa, F. Comelli, I. Bettoni, M. Colleoni, and G. Giagnoni, “The endogenous fatty acid amide, palmitoylethanolamide, has anti-allodynic and anti-hyperalgesic effects in a murine model of neuropathic pain: involvement of CB1, TRPV1 and PPARγ receptors and neurotrophic factors,” Pain, vol. 139, no. 3, pp. 541–550, 2008.
[25]
G. Godlewski, L. Offertáler, J. A. Wagner, and G. Kunos, “Receptors for acylethanolamides-GPR55 and GPR119,” Prostaglandins and Other Lipid Mediators, vol. 89, no. 3-4, pp. 105–111, 2009.
[26]
H. S. Hansen and T. A. Diep, “N-acylethanolamines, anandamide and food intake,” Biochemical Pharmacology, vol. 78, no. 6, pp. 553–560, 2009.
[27]
H. S. Hansen, “Effect of diet on tissue levels of palmitoylethanolamide,” CNS & Neurological Disorders, vol. 12, no. 1, pp. 17–25, 2013.
[28]
K. Tsuboi, N. Ikematsu, T. Uyama, D. G. Deutsch, A. Tokumura, and N. Ueda, “Biosynthetic pathways of bioactive N-acylethanolamines in brain,” CNS & Neurological Disorders, vol. 12, no. 1, pp. 7–16, 2013.
[29]
M. G. J. Balvers, K. C. M. Verhoeckx, S. Bijlsma et al., “Fish oil and inflammatory status alter the n-3 to n-6 balance of the endocannabinoid and oxylipin metabolomes in mouse plasma and tissues,” Metabolomics, vol. 8, no. 6, pp. 1130–1147, 2012.
[30]
M. G. Balvers, K. C. Verhoeckx, J. Meijerink, H. M. Wortelboer, and R. F. Witkamp, “Measurement of palmitoylethanolamide and other N-acylethanolamines during physiological and pathological conditions,” CNS & Neurological Disorders, vol. 12, no. 1, pp. 23–33, 2013.
[31]
E. Esposito and S. Cuzzocrea, “Palmitoylethanolamide in homeostatic and traumatic central nervous system injuries,” CNS & Neurological Disorders, vol. 12, no. 1, pp. 55–61, 2013.
[32]
M. M. Joosten, M. G. J. Balvers, K. C. M. Verhoeckx, H. F. J. Hendriks, and R. F. Witkamp, “Plasma anandamide and other N-acylethanolamines are correlated with their corresponding free fatty acid levels under both fasting and non-fasting conditions in women,” Nutrition and Metabolism, vol. 7, article 49, 2010.
[33]
T. Bisogno, “Endogenous cannabinoids: structure and metabolism,” Journal of Neuroendocrinology, vol. 20, no. 1, pp. 1–9, 2008.
[34]
B. Q. Wei, T. S. Mikkelsen, M. K. McKinney, E. S. Lander, and B. F. Cravatt, “A second fatty acid amide hydrolase with variable distribution among placental mammals,” Journal of Biological Chemistry, vol. 281, no. 48, pp. 36569–36578, 2006.
[35]
J. F. Bermejo-Martin, R. Ortiz de Lejarazu, T. Pumarola, et al., “Th1 and Th17 hypercytokinemia as early host response signature in severe pandemic influenza,” Critical Care, vol. 13, p. R201, 2009.
[36]
T. H. Mogensen and S. R. Paludan, “Molecular pathways in virus-induced cytokine production,” Microbiology and Molecular Biology Reviews, vol. 65, pp. 131–150, 2001.
[37]
I. Meunier, C. Embury-Hyatt, S. Stebner et al., “Virulence differences of closely related pandemic 2009 H1N1 isolates correlate with increased inflammatory responses in ferrets,” Virology, vol. 422, no. 1, pp. 125–131, 2012.
[38]
M. B. Rothberg and S. D. Haessler, “Complications of seasonal and pandemic influenza,” Critical Care Medicine, vol. 38, supplement 4, pp. e91–e97, 2010.
[39]
L. Kaiser, R. S. Fritz, S. E. Straus, L. Gubareva, and F. G. Hayden, “Symptom pathogenesis during acute influenza: interleukin-6 and other cytokine responses,” Journal of Medical Virology, vol. 64, no. 3, pp. 262–268, 2001.
[40]
M. L. Heltzer, S. E. Coffin, K. Maurer et al., “Immune dysregulation in severe influenza,” Journal of Leukocyte Biology, vol. 85, no. 6, pp. 1036–1043, 2009.
[41]
X. Yu, X. Zhang, B. Zhao et al., “Intensive cytokine induction in pandemic H1N1 influenza virus infection accompanied by robust production of IL-10 and IL-6,” PLoS One, vol. 6, no. 12, Article ID e28680, 2011.
[42]
S. Cerrato, P. Brazis, M. F. della Valle, A. Miolo, and A. Puigdemont, “Effects of palmitoylethanolamide on immunologically induced histamine, PGD2 and TNFα release from canine skin mast cells,” Veterinary Immunology and Immunopathology, vol. 133, no. 1, pp. 9–15, 2010.
[43]
R. di Paola, D. Impellizzeri, A. Torre, et al., “Effects of palmitoylethanolamide on intestinal injury and inflammation caused by ischemia-reperfusion in mice,” Journal of Leukocyte Biology, vol. 91, pp. 911–920, 2012.
[44]
R. di Paola, D. Impellizzeri, P. Mondello, et al., “Palmitoylethanolamide reduces early renal dysfunction and injury caused by experimental ischemia and reperfusion in mice,” Shock, vol. 38, pp. 356–366, 2012.
[45]
J. M. K. Hesselink, “New targets in pain, non-neuronal cells, and the role of palmitoylethanolamide,” Open Pain Journal, vol. 5, no. 1, pp. 12–23, 2012.
[46]
J. M. Keppel Hesselink and T. A. Hekker, “Therapeutic utility of palmitoylethanolamide in the treatment of neuropathic pain associated with various pathological conditions: a case series,” Journal of Pain Research, vol. 5, pp. 437–442, 2012.