Diabetic retinopathy (DR) is the leading cause of vision loss in working-age adults, and diabetic macular edema (DME) is the most common cause of visual impairment in individuals with DR. This review focuses on the pathophysiology, previous treatment paradigms, and emerging treatment options in the management of DME. 1. Introduction Diabetic retinopathy (DR) is the leading cause of vision loss in working-age adults. In 2002, there were estimated to be just over 13.5 million individuals afflicted with diabetes mellitus (DM) in the USA, or about 6% of the population. Since then, revised estimates for 2011 indicate that 25.8 million people have DM in the USA, of which 18.8 million are diagnosed and 7 million cases are undiagnosed [1, 2]. Approximately 28.5% of individuals with DM have some form of retinopathy; 4.4% of individuals are at risk of severe vision loss secondary to advanced disease. Present estimates indicate that the incidences of DM and DR are both significantly increasing with as many as 50 million or more individuals in the USA having DM by the year 2050, of which half are expected to have some form of retinopathy [1–5]. DR can be categorized into two broad groups: (1) nonproliferative diabetic retinopathy (NPDR) and (2) proliferative diabetic retinopathy (PDR). Within NPDR, patients are classified as mild, moderate, or severe; severe NPDR is based on at least one of the following findings: diffuse intraretinal hemorrhages in all quadrants, venous beading in at least 2 quadrants, or the presence of intraretinal microvascular abnormalities. Of the two broad categories, proliferative disease, while it is less common, results in more severe vision loss. In nonproliferative disease, the most common cause of vision loss is due to diabetic macular edema (DME). At present, individuals with DR in the USA have a prevalence of DME between 3 and 5%, with this percentage increasing with age [6]. A recent meta-analysis of 35 population-based studies pooling data from the USA, Europe, Asia, and Australia found that in individuals with DM the prevalence of any type of DR is 35%, with DME present in 7.5% and PDR present in 7.2% of individuals. These prevalence rates were found to be significantly higher in individuals with type 1 DM compared to type 2 DM [7]. In the USA, over 90% of individuals with DM are type 2 diabetics [8]. Summarizing the above data as it applies to the USA, at present, approximately 1.1 million individuals are at serious risk of sight-threatening vision loss from DR. Of these “at risk” individuals, DME is the major etiology of visual
References
[1]
Centers for Disease Control and Prevention, National Diabetes Fact Sheet: National Estimates and General Information on Diabetes and pre Diabetes in the United States, 2011, Department of Health and Human Services, Centers for Disease Control and Prevention, Atlanta, Ga, USA, 2011.
[2]
A. Jain, D. Sarraf, and D. Fong, “Preventing diabetic retinopathy through control of systemic factors,” Current Opinion in Ophthalmology, vol. 14, no. 6, pp. 389–394, 2003.
[3]
M. S. Blumenkranz, “Optimal current and future treatments for diabetic macular oedema,” Eye, vol. 24, no. 3, pp. 428–434, 2010.
[4]
J. H. Kempen, B. J. O'Colmain, M. C. Leske et al., “The prevalence of diabetic retinopathy among adults in the United States,” Archives of Ophthalmology, vol. 122, no. 4, pp. 552–563, 2004.
[5]
K. M. V. Narayan, J. P. Boyle, L. S. Geiss, J. B. Saaddine, and T. J. Thompson, “Impact of recent increase in incidence on future diabetes burden: U.S., 2005–2050,” Diabetes Care, vol. 29, no. 9, pp. 2114–2116, 2006.
[6]
J. Ding and T. Y. Wong, “Current epidemiology of diabetic retinopathy and diabetic macular edema,” Current Diabetes Reports, vol. 12, no. 4, pp. 346–354, 2012.
[7]
J. W. Y. Yau, S. L. Rogers, R. Kawasaki et al., “Global prevalence and major risk factors of diabetic retinopathy,” Diabetes Care, vol. 35, no. 3, pp. 556–564, 2012.
[8]
K. M. V. Narayan, J. P. Boyle, T. J. Thompson, S. W. Sorensen, and D. F. Williamson, “Lifetime risk for diabetes mellitus in the United States,” Journal of the American Medical Association, vol. 290, no. 14, pp. 1884–1890, 2003.
[9]
Photocoagulation for Diabetic Macular Edema, “Early treatment diabetic retinopathy study report number 1. Early Treatment Diabetic Retinopathy Study Research Group,” Archives of Ophthalmology, vol. 103, no. 12, pp. 1796–1806, 1985.
[10]
I. Klaassen, C. J. Van Noorden, and R. O. Schlingemann, “Molecular basis of the inner blood-retinal barrier and its breakdown in diabetic macular edema and other pathological conditions,” Progress in Retinal and Eye Research, vol. 34, pp. 19–48, 2013.
[11]
A. M. Joussen, V. Poulaki, M. L. Le et al., “A central role for inflammation in the pathogenesis of diabetic retinopathy,” The FASEB Journal, vol. 18, no. 12, pp. 1450–1452, 2004.
[12]
A. M. Joussen, V. Poulaki, N. Mitsiades et al., “Suppression of Fas-FasL-induced endothelial cell apoptosis prevents diabetic blood-retinal barrier breakdown in a model of streptozotocin-induced diabetes,” The FASEB Journal, vol. 17, no. 1, pp. 76–78, 2003.
[13]
R. J. Antcliff and J. Marshall, “The pathogenesis of edema in diabetic maculopathy,” Seminars in Ophthalmology, vol. 14, no. 4, pp. 223–232, 1999.
[14]
M. J. Tolentino, J. W. Miller, E. S. Gragoudas et al., “Intravitreous injections of vascular endothelial growth factor produce retinal ischemia and microangiopathy in an adult primate,” Ophthalmology, vol. 103, no. 11, pp. 1820–1828, 1996.
[15]
P. Carmeliet and R. K. Jain, “Molecular mechanisms and clinical applications of angiogenesis,” Nature, vol. 473, no. 7347, pp. 298–307, 2011.
[16]
D. Watanabe, K. Suzuma, S. Matsui et al., “Erythropoietin as a retinal angiogenic factor in proliferative diabetic retinopathy,” The New England Journal of Medicine, vol. 353, no. 8, pp. 782–792, 2005.
[17]
W. Cai, S. L. Rook, Z. Y. Jiang, N. Takahara, and L. P. Aiello, “Mechanisms of hepatocyte growth factor-induced retinal endothelial cell migration and growth,” Investigative Ophthalmology and Visual Science, vol. 41, no. 7, pp. 1885–1893, 2000.
[18]
R. H. Muni, R. P. Kohly, E. Q. Lee, et al., “rospective study of inflammatory biomarkers and risk of diabetic retinopathy in the diabetes control and complications trial,” JAMA Ophthalmology, vol. 131, no. 4, pp. 514–521, 2013.
[19]
S. Wang, J. K. Park, and E. J. Duh, “Novel targets against retinal angiogenesis in diabetic retinopathy,” Current Diabetes Reports, vol. 12, no. 4, pp. 355–363, 2012.
[20]
L. A. Owen and M. E. Hartnett, “Soluble mediators of diabetic macular edema: the diagnostic role of aqueous VEGF and cytokine levels in diabetic macular edema,” Current Diabetes Reports, vol. 13, no. 4, pp. 476–480, 2013.
[21]
H. Funatsu, H. Noma, T. Mimura, S. Eguchi, and S. Hori, “Association of vitreous inflammatory factors with diabetic macular edema,” Ophthalmology, vol. 116, no. 1, pp. 73–79, 2009.
[22]
M. Brownlee, “The pathobiology of diabetic complications: a unifying mechanism,” Diabetes, vol. 54, no. 6, pp. 1615–1625, 2005.
[23]
Y. Wang, S. Wang, and N. Sheibani, “Enhanced proangiogenic signaling in thrombospondin-1-deficient retinal endothelial cells,” Microvascular Research, vol. 71, no. 3, pp. 143–151, 2006.
[24]
H. Funatsu, H. Noma, T. Mimura, S. Eguchi, and S. Hori, “Association of vitreous inflammatory factors with diabetic macular edema,” Ophthalmology, vol. 116, no. 1, pp. 73–79, 2009.
[25]
The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group, “Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy,” The New England Journal of Medicine, vol. 342, no. 6, pp. 381–389, 2000.
[26]
The Diabetes Control and Complications Trial Research Group, “The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus,” The New England Journal of Medicine, vol. 329, no. 14, pp. 977–986, 1993.
[27]
The Diabetes Control and Complications Trial, “The effect of intensive diabetes treatment on the progression of diabetic retinopathy in insulin-dependent diabetes mellitus: the diabetes control and complications trial,” Archives of Ophthalmology, vol. 113, no. 1, pp. 36–51, 1995.
[28]
The Diabetes Control and Complications Trial Research Group, “Progression of retinopathy with intensive versus conventional treatment in the Diabetes Control and Complications Trial,” Ophthalmology, vol. 102, no. 4, pp. 647–661, 1995.
[29]
The Diabetes Control and Complications Trial and Epidemiology of Diabetes Interventions and Complications Research Group, “Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy,” The New England Journal of Medicine, vol. 342, no. 6, pp. 381–389, 2000.
[30]
N. H. White, W. Sun, P. A. Cleary, et al., “Prolonged effect of intensive therapy on the risk of retinopathy complications in patients with type 1 diabetes mellitus: 10 years after the Diabetes Control and Complications Trial,” Archives of Ophthalmology, vol. 126, no. 12, pp. 1707–1715, 2008.
[31]
R. Turner, “Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33),” The Lancet, vol. 352, no. 9131, pp. 837–853, 1998.
[32]
The United Kingdom Prospective Diabetes Study Group, “ETight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38,” British Medical Journal, vol. 317, no. 7160, pp. 703–713, 1999.
[33]
Early Treatment Diabetic Retinopathy Study Group, “Photocoagulation for diabetic macular edema. Early treatment diabetic retinopathy study report number 1,” Archives of Ophthalmology, vol. 103, no. 12, pp. 1796–1806, 1985.
[34]
D. S. Fong, S. F. Strauber, L. P. Aiello et al., “Comparison of the modified early treatment diabetic retinopathy study and mild macular grid laser photocoagulation strategies for diabetic macular edema,” Archives of Ophthalmology, vol. 125, no. 4, pp. 469–480, 2007.
[35]
A. Jain, J. Collen, A. Kaines, J.-P. Hubschman, and S. Schwartz, “Short-duration focal pattern grid macular photocoagulation for diabetic macular edema: four-month outcomes,” Retina, vol. 30, no. 10, pp. 1622–1626, 2010.
[36]
S. Sivaprasad, M. Elagouz, D. McHugh, O. Shona, and G. Dorin, “Micropulsed diode laser therapy: evolution and clinical applications,” Survey of Ophthalmology, vol. 55, no. 6, pp. 516–530, 2010.
[37]
A. J. Witkin and G. C. Brown, “Update on nonsurgical therapy for diabetic macular edema,” Current Opinion in Ophthalmology, vol. 22, no. 3, pp. 185–189, 2011.
[38]
M. Soheilian, K. H. Garfami, A. Ramezani, M. Yaseri, and G. A. Peyman, “Two-year results of a randomized trial of intravitreal bevacizumab alone or combined with triamcinolone versus laser in diabetic macular edema,” Retina, vol. 32, no. 2, pp. 314–321, 2012.
[39]
Diabetic Retinopathy Clinical Research Network, “Three-year follow-up of a randomized trial comparing focal/grid photocoagulation and intravitreal triamcinolone for diabetic macular edema,” Archives of Ophthalmology, vol. 127, no. 3, pp. 245–251, 2009.
[40]
R. Rajendram, S. Fraser-Bell, A. Kaines, et al., “A 2-year prospective randomized controlled trial of intravitreal bevacizumab or laser therapy (BOLT) in the management of diabetic macular edema: 24-month data: report 3,” Archives of Ophthalmology, vol. 130, no. 8, pp. 972–979, 2012.
[41]
Pan-American Collaborative Retina Study Group (PACORES), “Intravitreal bevacizumab plus grid laser photocoagulation or intravitreal bevacizumab or grid laser photocoagulation for diffuse diabetic macular edema: results of the Pan-american Collaborative Retina Study Group at 24 months,” Retina, vol. 33, no. 2, pp. 403–413, 2013.
[42]
F. Audren, A. Lecleire-Collet, A. Erginay et al., “Intravitreal triamcinolone acetonide for diffuse diabetic macular edema: phase 2 trial comparing 4?mg vs 2?mg,” American Journal of Ophthalmology, vol. 142, no. 5, pp. 794.e8–799.e8, 2006.
[43]
M. C. Gillies, F. K. P. Sutter, J. M. Simpson, J. Larsson, H. Ali, and M. Zhu, “Intravitreal triamcinolone for refractory diabetic macular edema. Two-year results of a double-masked, placebo-controlled, randomized clinical trial,” Ophthalmology, vol. 113, no. 9, pp. 1533–1538, 2006.
[44]
Diabetic Retinopathy Clinical Research Network, “A randomized trial comparing intravitreal triamcinolone acetonide and focal/grid photocoagulation for diabetic macular edema,” Ophthalmology, vol. 115, no. 9, pp. 1447–1449, 2008.
[45]
B. D. Kuppermann, M. S. Blumenkranz, J. A. Haller et al., “Randomized controlled study of an intravitreous dexamethasone drug delivery system in patients with persistent macular edema,” Archives of Ophthalmology, vol. 125, no. 3, pp. 309–317, 2007.
[46]
P. A. Pearson, T. L. Comstock, M. Ip et al., “Fluocinolone acetonide intravitreal implant for diabetic macular edema: a 3-year multicenter, randomized, controlled clinical trial,” Ophthalmology, vol. 118, no. 8, pp. 1580–1587, 2011.
[47]
FAME Study Group, “Sustained delivery fluocinolone acetonide vitreous inserts provide benefit for at least 3 years in patients with diabetic macular edema,” Ophthalmology, vol. 119, no. 10, pp. 2125–2132, 2012.
[48]
P. A. Campochiaro, G. Hafiz, S. M. Shah et al., “Sustained ocular delivery of fluocinolone acetonide by an intravitreal insert,” Ophthalmology, vol. 117, no. 7, pp. 1393–1399, 2010.
[49]
J. A. Haller, B. D. Kuppermann, M. S. Blumenkranz et al., “Randomized controlled trial of an intravitreous dexamethasone drug delivery system in patients with diabetic macular edema,” Archives of Ophthalmology, vol. 128, no. 3, pp. 289–296, 2010.
[50]
Ozurdex CHAMPLAIN Study Group, “Dexamethasone intravitreal implant for treatment of diabetic macular edema in vitrectomized patients,” Retina, vol. 31, no. 5, pp. 915–923, 2011.
[51]
L. P. Aiello, R. L. Avery, P. G. Arrigg et al., “Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders,” The New England Journal of Medicine, vol. 331, no. 22, pp. 1480–1487, 1994.
[52]
Macugen 1013 Study Group, “A phase 2/3, multicenter, randomized, double-masked, 2-year trial of pegaptanib sodium for the treatment of diabetic macular edema,” Ophthalmology, vol. 118, no. 6, pp. 1107–1118, 2011.
[53]
RISE and RIDE Research Group, “Ranibizumab for diabetic macular edema: results from 2 phase iii randomized trials: RISE and RIDE,” Ophthalmology, vol. 119, no. 4, pp. 789–801, 2012.
[54]
RESTORE Study Group, “The restore study: ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema,” Evidence-Based Ophthalmology, vol. 12, no. 4, pp. 206–207, 2011.
[55]
READ-2 Study Group, “Primary end point (Six Months) results of the ranibizumab for edema of the macula in diabetes (READ-2) study,” Ophthalmology, vol. 116, no. 11, pp. 2175–2181, 2009.
[56]
READ-2 Study Group, “Two-year outcomes of the ranibizumab for edema of the macula in diabetes (READ-2) study,” Ophthalmology, vol. 117, no. 11, pp. 2146–2151, 2010.
[57]
P. Massin, F. Bandello, J. G. Garweg et al., “Safety and efficacy of ranibizumab in diabetic macular edema (RESOLVE study): a 12-month, randomized, controlled, double-masked, multicenter phase II study,” Diabetes Care, vol. 33, no. 11, pp. 2399–2405, 2010.
[58]
DA VINCI Study Group, “One-year outcomes of the DA VINCI study of VEGF trap-eye in eyes with diabetic macular edema,” Ophthalmology, vol. 119, no. 8, pp. 1658–1665, 2012.
[59]
Diabetic Retinopathy Clinical Research Network, “Intravitreal ranibizumab for diabetic macular edema with prompt versus deferred laser treatment: three-year randomized trial results,” Ophthalmology, vol. 119, no. 11, pp. 2312–2318, 2012.
[60]
Diabetic Retinopathy Clinical Research Network, “Expanded 2-year follow-up of ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema,” Ophthalmology, vol. 118, no. 4, pp. 609–614, 2011.
[61]
Pan-American Collaborative Retina Study Group (PACORES), “Comparison of two doses of primary intravitreal bevacizumab (Avastin) for diffuse diabetic macular edema: results from the Pan-American Collaborative Retina Study Group (PACORES) at 12-month follow-up,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 247, no. 6, pp. 735–743, 2009.
[62]
J. W. Harbour, W. E. Smiddy, H. W. Flynn Jr., and P. E. Rubsamen, “Vitrectomy for diabetic macular edema associated with a thickened and taut posterior hyaloid membrane,” American Journal of Ophthalmology, vol. 121, no. 4, pp. 405–413, 1996.
[63]
Diabetic Retinopathy Clinical Research Network Writing Committee, “Vitrectomy outcomes in eyes with diabetic macular edema and vitreomacular traction,” Ophthalmology, vol. 117, no. 6, pp. 1087.e3–1093.e3, 2010.
[64]
C. J. Flaxel, A. R. Edwards, L. P. Aiello et al., “Factors associated with visual acuity outcomes after vitrectomy for diabetic macular edema: diabetic retinopathy clinical research network,” Retina, vol. 30, no. 9, pp. 1488–1495, 2010.
[65]
A. Yanyali, B. Aytug, F. Horozoglu, and A. F. Nohutcu, “Bevacizumab (Avastin) for diabetic macular edema in previously vitrectomized eyes,” American Journal of Ophthalmology, vol. 144, no. 1, pp. 124–126, 2007.
[66]
A. M. Saeed, “Combined vitrectomy and intravitreal injection versus combined laser and injection for treatment of intractable diffuse diabetic macular edema,” Journal of Clinical Ophthalmology, vol. 7, pp. 283–297, 2013.
[67]
F. Lopez-Lopez, M. Rodriguez-Blanco, F. Gómez-Ulla, and J. Marticonera, “Enzymatic vitreolysis,” Current Diabetes Reviews, vol. 5, no. 1, pp. 57–62, 2009.