全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Necrotizing Soft Tissue Infections: Surgeon’s Prospective

DOI: 10.1155/2013/609628

Full-Text   Cite this paper   Add to My Lib

Abstract:

Necrotizing soft tissue infections (NSTIs) are fulminant infections of any layer of the soft tissue compartment associated with widespread necrosis and systemic toxicity. Delay in diagnosing and treating these infections increases the risk of mortality. Early and aggressive surgical debridement with support for the failing organs significantly improves the survival. Although there are different forms of NSTIs like Fournier’s gangrene or clostridial myonecrosis, the most important fact is that they share common pathophysiology and principles of treatment. The current paper summarizes the pathophysiology, clinical features, the diagnostic workup required and the treatment principles to manage these cases. 1. Introduction Necrotizing soft tissue infections (NSTIs) are fulminant infections of any layer of the soft tissue compartment associated with widespread necrosis, systemic toxicity and a high mortality rate if not treated early. These infections were first described by Jones in 1871 and at that time they were termed “hospital gangrene” [1]. The term “necrotizing soft tissue infections” has been emphasized to encompass all necrotizing infections and advocate an approach to all of them that uses the same principles for diagnostic and treatment strategies [2]. 2. The Current Scenario The incidence of NSTIs in the United States of America is estimated to be around 500–1500 cases per year [3]. The mortality rates have been reported to be around 25%, although it is higher in some studies [4]. 3. Classification of NSTIs The Food and Drug Administration (FDA) has classified skin and soft tissue infections in to two categories, namely, the complicated infections [5, 6]. Based on the microbiological characteristics, NSTIs are broadly classified into three types. Type I Infections. Type I infections are the most common forms accounting for 80% or more of all the NSTIs, for example, Fournier’s gangrene and Ludwig’s angina [7]. These are mostly polymicrobial infections having a combination of aerobes, anaerobes and facultative aerobes/anaerobes. The common aerobic species isolated from these infections are streptococci, staphylococci, enterococci, and the family of gram-negative rods. Bacteroides species are the most common anaerobes involved. Type II Infections. Type II infections are usually mono-microbial and usually follow a minor injury accounting for 10–15% of all NSTIs [8, 9]. Common organisms involved are the Group A beta-hemolytic streptococcus or the S. aureus. Type III Infections. These account for less than 5% of all NSTIs and clostridial gas forming

References

[1]  J. Jones, Surgical Memoirs of the War of the Rebellion: Investigation Upon the Nature, Causes and Treatment of Hospital Gangrene as Prevailed in the Confederate Armies 1861–1865, US Sanitary Commission, New York, NY, USA, 1871.
[2]  E. P. Dellinger, “Severe necrotizing soft-tissue infections. Multiple disease entities requiring a common approach,” Journal of the American Medical Association, vol. 246, no. 15, pp. 1717–1721, 1981.
[3]  D. A. Anaya and E. P. Dellinger, “Necrotizing soft-tissue infection: diagnosis and management,” Clinical Infectious Diseases, vol. 44, no. 5, pp. 705–710, 2007.
[4]  T. Shimizu and Y. Tokuda, “Necrotizing fasciitis,” Internal Medicine, vol. 49, no. 12, pp. 1051–1057, 2010.
[5]  Guidance for Industry, “Uncomplicated and Complicated Skin and Skin Structure Infections: Developing Antimicrobial Drugs Treatment,” US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research, 2010.
[6]  D. L. Stevens, A. L. Bisno, H. F. Chambers, et al., “Practice guidelines for the management of skin and soft-tissue infections,” Clinical Infectious Diseases, vol. 41, no. 12, pp. 1373–1406, 2005.
[7]  J. S. Ustin and M. A. Malangoni, “Necrotizing soft-tissue infections,” Critical Care Medicine, vol. 39, no. 9, pp. 2156–2162, 2011.
[8]  Centers for Disease Control and Prevention (CDC), “Invasive group A streptococcal infections—United Kingdom, 1994,” Morbidity and Mortality Weekly Report, vol. 43, no. 21, pp. 401–402, 1994.
[9]  C. M. Ogilvie and T. Miclau, “Necrotizing soft tissue infections of the extremities and back,” Clinical Orthopaedics and Related Research, no. 447, pp. 179–186, 2006.
[10]  G. B. Hart, R. C. Lamb, and M. B. Strauss, “Gas gangrene. I: a collective review,” Journal of Trauma, vol. 23, no. 11, pp. 991–1000, 1983.
[11]  D. A. Present, R. Meislin, and B. Shaffer, “Gas gangrene: a review,” Orthopaedic Review, vol. 19, no. 4, pp. 333–341, 1990.
[12]  L. Weinstein and M. A. Barza, “Gas gangrene,” New England Journal of Medicine, vol. 289, no. 21, pp. 1129–1131, 1973.
[13]  A. M. Dechet, P. A. Yu, N. Koram, and J. Painter, “Nonfoodborne Vibrio infections: an important cause of morbidity and mortality in the United States, 1997-2006,” Clinical Infectious Diseases, vol. 46, no. 7, pp. 970–976, 2008.
[14]  J. S. Yoder, M. C. Hlavsa, G. F. Craun et al., “Surveillance for waterborne disease and outbreaks associated with recreational water use and other aquatic facility-associated health events—United States, 2005-2006,” Morbidity and Mortality Weekly Report, vol. 57, no. 9, pp. 1–29, 2008.
[15]  M. M. Roden, T. E. Zaoutis, W. L. Buchanan et al., “Epidemiology and outcome of zygomycosis: a review of 929 reported cases,” Clinical Infectious Diseases, vol. 41, no. 5, pp. 634–653, 2005.
[16]  M. M. Brett, J. Hood, J. S. Brazier, B. I. Duerden, and S. J. M. Hahné, “Soft tissue infections caused by spore-forming bacteria in injecting drug users in the United Kingdom,” Epidemiology and Infection, vol. 133, no. 4, pp. 575–582, 2005.
[17]  “Abortion,” in Williams Obstetrics, F. G. Cunningham, K. J. Leveno, S. L. Bloom, J. C. Hauth, D. J. Rouse, and C. Y. Spong, Eds., pp. 215–237, McGraw-Hill Medical, New York, NY, USA, 23rd edition, 2010.
[18]  “Episiotomy,” in Operative Obstetrics, L. C. Gilstrap, F. G. Cunningham, and J. P. VanDorsten, Eds., pp. 63–88, McGraw-Hill Professional, New York, NY, USA, 2nd edition, 2002.
[19]  H. M. Schrager, S. Albertí, C. Cywes, G. J. Dougherty, and M. R. Wessels, “Hyaluronic acid capsule modulates M protein-mediated adherence and acts as a ligand for attachment of group A streptococcus to CD44 on human keratinocytes,” Journal of Clinical Investigation, vol. 101, no. 8, pp. 1708–1716, 1998.
[20]  C. Cywes and M. R. Wessels, “Group A Streptococcus tissue invasion by CD44-mediated cell signalling,” Nature, vol. 414, no. 6864, pp. 648–652, 2001.
[21]  V. Nizet, B. Beall, D. J. Bast et al., “Genetic locus for streptolysin S production by group A streptococcus,” Infection and Immunity, vol. 68, no. 7, pp. 4245–4254, 2000.
[22]  R. J. Edwards, G. W. Taylor, M. Ferguson et al., “Specific C-terminal cleavage and inactivation of interleukin-8 by invasive disease isolates of Streptococcus pyogenes,” Journal of Infectious Diseases, vol. 192, no. 5, pp. 783–790, 2005.
[23]  A. K. May, “Skin and soft tissue infections,” Surgical Clinics of North America, vol. 89, no. 2, pp. 403–420, 2009.
[24]  S. M. Hamilton, A. E. Bryant, K. C. Carroll et al., “In vitro production of Panton-Valentine leukocidin among strains of methicillin-resistant Staphylococcus aureus causing diverse infections,” Clinical Infectious Diseases, vol. 45, no. 12, pp. 1550–1558, 2007.
[25]  B. A. Diep, G. G. Stone, L. Basuino et al., “The arginine catabolic mobile element and staphylococcal chromosomal cassette mec linkage: convergence of virulence and resistance in the USA300 clone of methicillin-resistant Staphylococcus aureus,” Journal of Infectious Diseases, vol. 197, no. 11, pp. 1523–1530, 2008.
[26]  J. R. Boelaert, J. van Cutsem, M. de Locht, Y. J. Schneider, and R. R. Crichton, “Deferoxamine augments growth and pathogenicity of Rhizopus, while hydroxypyridinone chelators have no effect,” Kidney International, vol. 45, no. 3, pp. 667–671, 1994.
[27]  D. C. Elliott, J. A. Kufera, and R. A. M. Myers, “Necrotizing soft tissue infections: risk factors for mortality and strategies for management,” Annals of Surgery, vol. 224, no. 5, pp. 672–683, 1996.
[28]  T. L. Bosshardt, V. J. Henderson, and C. H. Organ Jr., “Necrotizing soft-tissue infections,” Archives of Surgery, vol. 131, no. 8, pp. 846–854, 1996.
[29]  C. R. McHenry, J. J. Piotrowski, D. Petrinic et al., “Determinants of mortality for necrotizing soft-tissue infections,” Annals of Surgery, vol. 221, no. 5, pp. 558–565, 1995.
[30]  S. T. Lille, T. T. Sato, L. H. Engrav, H. Foy, and G. J. Jurkovich, “Necrotizing soft tissue infections: obstacles in diagnosis,” Journal of the American College of Surgeons, vol. 182, no. 1, pp. 7–11, 1996.
[31]  E. Rubinstein, D. Dehertogh, and L. Brettman, “Severe necrotizing soft-tissue infections: report of 22 cases,” Connecticut Medicine, vol. 59, no. 2, pp. 67–72, 1995.
[32]  R. Ben-Abraham, N. Keller, R. Vered, R. Harel, Z. Barzilay, and G. Paret, “Invasive group A streptococcal infections in a large tertiary center: epidemiology, characteristics and outcome,” Infection, vol. 30, no. 2, pp. 81–85, 2002.
[33]  G. Singh, S. K. Sinha, S. Adhikary, K. S. Babu, P. Ray, and S. K. Khanna, “Necrotising infections of soft tissues—a clinical profile,” European Journal of Surgery, vol. 168, no. 6, pp. 366–371, 2002.
[34]  T. Burget, “Necrotizing fasciitis? The hazards of delay,” Journal of the Royal Society of Medicine, vol. 88, pp. 342–343, 1995.
[35]  R. Kaul, A. McGeer, D. E. Low et al., “Population-based surveillance for group A streptococcal necrotiziug fasciitis: clinical features, prognostic indicators, and microbiologic analysis of seventy-seven cases. Ontario Group A Streptococcal Study,” American Journal of Medicine, vol. 103, no. 1, pp. 18–24, 1997.
[36]  C. W. Hoge, B. Schwartz, D. F. Talkington, R. F. Breiman, E. M. MacNeill, and S. J. Englender, “The changing epidemiology of invasive group A streptococcal infections and the emergence of streptococcal toxic shock-like syndrome: a retrospective population-based study,” Journal of the American Medical Association, vol. 269, no. 3, pp. 384–389, 1993.
[37]  A. L. Bisno and D. L. Stevens, “Streptococcal infections of skin and soft tissues,” New England Journal of Medicine, vol. 334, no. 4, pp. 240–245, 1996.
[38]  W. G. Hlady and K. C. Klontz, “The epidemiology of Vibrio infections in Florida, 1981-1993,” Journal of Infectious Diseases, vol. 173, no. 5, pp. 1176–1183, 1996.
[39]  B. W. Frazee, C. Fee, J. Lynn et al., “Community-acquired necrotizing soft tissue infections: a review of 122 cases presenting to a single emergency department over 12 years,” Journal of Emergency Medicine, vol. 34, no. 2, pp. 139–146, 2008.
[40]  C. H. Wong and Y. S. Wang, “The diagnosis of necrotizing fasciitis,” Current Opinion in Infectious Diseases, vol. 18, no. 2, pp. 101–106, 2005.
[41]  J. A. Majeski and J. F. John Jr., “Necrotizing soft tissue Infections: a guide to early diagnosis and initial therapy,” Southern Medical Journal, vol. 96, no. 9, pp. 900–905, 2003.
[42]  C. H. Wong, L. W. Khin, K. S. Heng, K. C. Tan, and C. O. Low, “The LRINEC (Laboratory Risk Indicator for Necrotizing Fasciitis) score: a tool for distinguishing necrotizing fasciitis from other soft tissue infections,” Critical Care Medicine, vol. 32, no. 7, pp. 1535–1541, 2004.
[43]  M. G. Wysoki, T. A. Santora, R. M. Shah, and A. C. Friedman, “Necrotizing fasciitis: CT characteristics,” Radiology, vol. 203, no. 3, pp. 859–863, 1997.
[44]  N. Zacharias, G. C. Velmahos, A. Salama et al., “Diagnosis of necrotizing soft tissue infections by computed tomography,” Archives of Surgery, vol. 145, no. 5, pp. 452–455, 2010.
[45]  T. E. Brothers, D. U. Tagge, J. E. Stutley, W. F. Conway, H. del Schutte Jr., and T. K. Byrne, “Magnetic resonance imaging differentiates between necrotizing and non-necrotizing fasciitis of the lower extremity,” Journal of the American College of Surgeons, vol. 187, no. 4, pp. 416–421, 1998.
[46]  J. Cuschieri, “Necrotizing soft tissue infection,” Surgical Infections, vol. 9, no. 6, pp. 559–562, 2008.
[47]  J. Majeski and E. Majeski, “Necrotizing fasciitis: improved survival with early recognition by tissue biopsy and aggressive surgical treatment,” Southern Medical Journal, vol. 90, no. 11, pp. 1065–1068, 1997.
[48]  I. Stamenkovic and P. D. Lew, “Early recognition of potentially fatal necrotizing fasciitis. The use of frozen-section biopsy,” New England Journal of Medicine, vol. 310, no. 26, pp. 1689–1693, 1984.
[49]  P. C. Lee, J. Turnidge, and P. J. McDonald, “Fine-needle aspiration biopsy in diagnosis of soft tissue infections,” Journal of Clinical Microbiology, vol. 22, no. 1, pp. 80–83, 1985.
[50]  H. H. Phan and C. S. Cocanour, “Necrotizing soft tissue infections in the intensive care unit,” Critical Care Medicine, vol. 38, supplement 9, pp. S460–S468, 2010.
[51]  D. A. Anaya, E. M. Bulger, Y. S. Kwon, L. S. Kao, H. Evans, and A. B. Nathens, “Predicting death in necrotizing soft tissue infections: a clinical score,” Surgical Infections, vol. 10, no. 6, pp. 517–522, 2009.
[52]  D. L. Stevens, Y. Ma, D. B. Salmi, E. McIndoo, R. J. Wallace, and A. E. Bryant, “Impact of antibiotics on expression of virulence-associated exotoxin genes in methicillin-sensitive and methicillin-resistant Staphylococcus aureus,” Journal of Infectious Diseases, vol. 195, no. 2, pp. 202–211, 2007.
[53]  B. D. Bilton, G. B. Zibari, R. W. McMillan, D. F. Aultman, G. Dunn, and J. C. McDonald, “Aggressive surgical management of necrotizing fasciitis serves to decrease mortality: a retrospective study,” American Surgeon, vol. 64, no. 5, pp. 397–401, 1998.
[54]  D. A. Anaya, K. McMahon, A. B. Nathens, S. R. Sullivan, H. Foy, and E. Bulger, “Predictors of mortality and limb loss in necrotizing soft tissue infections,” Archives of Surgery, vol. 140, no. 2, pp. 151–16, 2005.
[55]  N. Eke, “Fournier's gangrene: a review of 1726 cases,” British Journal of Surgery, vol. 87, no. 6, pp. 718–728, 2000.
[56]  W. S. Huang, S. C. Hsieh, C. S. Hsieh, J. Y. Schoung, and T. Huang, “Use of vacuum-assisted wound closure to manage limb wounds in patients suffering from acute necrotizing fasciitis,” Asian Journal of Surgery, vol. 29, no. 3, pp. 135–139, 2006.
[57]  M. S. Firstenberg, E. Abel, D. Blais et al., “The use of extracorporeal membrane oxygenation in severe necrotizing soft tissue infections complicated by septic shock,” American Surgeon, vol. 76, no. 11, pp. 1287–1289, 2010.
[58]  N. Jallali, S. Withey, and P. E. Butler, “Hyperbaric oxygen as adjuvant therapy in the management of necrotizing fasciitis,” American Journal of Surgery, vol. 189, no. 4, pp. 462–466, 2005.
[59]  D. Kaye, “Effect of hyperbaric oxygen on Clostridia in vitro and in vivo,” Proceedings of the Society for Experimental Biology and Medicine, vol. 124, no. 2, pp. 360–366, 1967.
[60]  M. M. Alejandria, M. A. Lansang, L. F. Dans, and J. B. Mantaring, “Intravenous immunoglobulin for treating sepsis and septic shock,” Cochrane Database of Systematic Reviews, no. 1, Article ID CD001090, 2002.
[61]  D. K. Rosing, S. Malepati, A. Yaghoubian et al., “The use of drotrecogin alpha for necrotizing soft tissue infections,” American Surgeon, vol. 76, no. 10, pp. 1104–1107, 2010.
[62]  M. K. Mills, I. Faraklas, C. Davis, G. J. Stoddard, and J. Saffle, “Outcomes from treatment of necrotizing soft-tissue infections: results from the National Surgical Quality Improvement Program database,” American Journal of Surgery, vol. 200, no. 6, pp. 790–797, 2010.
[63]  L. Obayashi, A. Konstantinidis, S. Shackelford et al., “Necrotizing soft tissue infections: delayed surgical treatment is associated with increased number of surgical debridements and morbidity,” Journal of Trauma, vol. 71, no. 5, pp. 1400–1405, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133