全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Rising Burden of Diabetes and Hypertension in Southeast Asian and African Regions: Need for Effective Strategies for Prevention and Control in Primary Health Care Settings

DOI: 10.1155/2013/409083

Full-Text   Cite this paper   Add to My Lib

Abstract:

Aim. To review the available literature on burden of diabetes mellitus (DM) and hypertension (HTN) and its coexistence in Southeast Asian (SEA) and the African (AFR) regions and to suggest strategies to improve DM and HTN prevention and control in primary health care (PHC) in the two regions. Methods. A systematic review of the papers published on DM, HTN, and prevention/control of chronic diseases in SEA and AFR regions between 1980 and December 2012 was included. Results. In the year 2011, SEA region had the second largest number of people with DM (71.4 million), while the AFR region had the smallest number (14.7 million). Screening studies identified high proportions (>50%) of individuals with previously undiagnosed HTN and DM in both of the SEA and AFR regions. Studies from both regions have shown that DM and HTN coexist in type 2 DM ranging from 20.6% in India to 78.4% in Thailand in the SEA region and ranging from 9.7% in Nigeria to 70.4% in Morocco in the AFR region. There is evidence that by lifestyle modification both DM and HTN can be prevented. Conclusion. To meet the twin challenge of DM and HTN in developing countries, PHCs will have to be strengthened with a concerted and multipronged effort to provide promotive, preventive, curative, and rehabilitative services. 1. Introduction Diabetes mellitus (DM) and hypertension (HTN) have emerged as major medical and public health issues worldwide, and both are important risk factors for coronary artery disease (CAD), heart failure, and cerebrovascular disease. DM is increasing in epidemic proportions globally. According to the WHO, the prevalence of DM in adults worldwide was estimated to be 4.0% in 1995 and is predicted to rise to 5.4% by the year 2025 such that the number of adults with DM in the world would rise from 135 million in 1995 to 300 million in the year 2025 [1]. The recent Burden of Metabolic Risk Factors of Chronic Diseases Study [2] conducted in 199 countries worldwide to assess the national, regional, and global trends in diabetes reported that the age-standardized adult diabetes prevalence was 9·8% (8.6–11.2) in men and 9.2% (8.0–10.5) in women in 2008, up from 8.3% (6.5–10.4) and 7.5% (5.8–9.6) in 1980. The number of people with diabetes increased from 153 (127–182) million in 1980 to 347 (314–382) million in 2008. The International Diabetes Federation (IDF) has come up with much higher figures in a recent report which estimated that in 2011, 366 million people worldwide had DM and if this trend continues, by 2030, 552 million people, or one in 10 adults, will have DM [3]. In the

References

[1]  H. King, R. E. Aubert, and W. H. Herman, “Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections,” Diabetes Care, vol. 21, no. 9, pp. 1414–1431, 1998.
[2]  G. Danaei, M. M. Finucane, Y. Lu et al., “National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants,” The Lancet, vol. 378, no. 9785, pp. 31–40, 2011.
[3]  N. Unwin, D. Whiting, L. Guariguata, G. Ghyoot, and D. Gan, Eds., Diabetes Atlas, International Diabetes Federation, Brussels, Belgium, 5th edition, 2011.
[4]  A. V. Chobanian, G. L. Bakris, H. R. Black et al., “The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report,” The Journal of the American Medical Association, vol. 289, no. 19, pp. 2560–2572, 2003.
[5]  P. M. Kearney, M. Whelton, K. Reynolds, P. Muntner, P. K. Whelton, and J. He, “Global burden of hypertension: analysis of worldwide data,” The Lancet, vol. 365, no. 9455, pp. 217–223, 2005.
[6]  G. Danaei, M. M. Finucane, J. K. Lin et al., “National, regional, and global trends in systolic blood pressure since 1980: systematic analysis of health examination surveys and epidemiological studies with 786 country-years and 5·4 million participants,” The Lancet, vol. 377, no. 9765, pp. 568–577, 2011.
[7]  C. M. M. Lawes, S. Vander Hoorn, M. R. Law, P. Elliott, S. MacMahon, and A. Rodgers, “Blood pressure and the global burden of disease 2000. Part 1: estimates of blood pressure levels,” Journal of Hypertension, vol. 24, no. 3, pp. 413–422, 2006.
[8]  L. H. Opie and Y. K. Seedat, “Hypertension in sub-Saharan African populations,” Circulation, vol. 112, no. 23, pp. 3562–3568, 2005.
[9]  R. M. Lago, P. P. Singh, and R. W. Nesto, “Diabetes and hypertension,” Nature Clinical Practice Endocrinology & Metabolism, vol. 3, no. 10, p. 667, 2007.
[10]  H. King and M. Rewers, “Diabetes in adults is now a third world problem. World Health Organization ad hoc diabetes reporting group,” Ethnicity & Disease, vol. 3, supplement, pp. S67–S74, 1993.
[11]  J. Oldroyd, M. Banerjee, A. Heald, and K. Cruickshank, “Diabetes and ethnic minorities,” Postgraduate Medical Journal, vol. 81, no. 958, pp. 486–490, 2005.
[12]  “WHO Country and regional data on diabetes,” http://www.who.int/diabetes/facts/world_figures/en/index1.html, http://www.who.int/diabetes/facts/world_figures/en/index5.html.
[13]  E. Sobngwi, F. Mauvais-Jarvis, P. Vexiau, J. C. Mbanya, and J. F. Gautier, “Diabetes in Africans. Part 1: epidemiology and clinical specificities,” Diabetes & Metabolism, vol. 27, no. 6, pp. 628–634, 2001.
[14]  D. L. Christensen, H. Friis, D. L. Mwaniki et al., “Prevalence of glucose intolerance and associated risk factors in rural and urban populations of different ethnic groups in Kenya,” Diabetes Research and Clinical Practice, vol. 84, no. 3, pp. 303–310, 2009.
[15]  A. Hussain, M. A. Rahim, A. K. A. Khant, S. M. K. Ali, and S. Vaaler, “Type 2 diabetes in rural and urban population: diverse prevalence and associated risk factors in Bangladesh,” Diabetic Medicine, vol. 22, no. 7, pp. 931–936, 2005.
[16]  R. M. Anjana, R. Pradeepa, M. Deepa et al., “Prevalence of diabetes and prediabetes (impaired fasting glucose and/or impaired glucose tolerance) in urban and rural India: phase I results of the Indian Council of Medical Research-INdia DIABetes (ICMR-INDIAB) study,” Diabetologia, vol. 54, no. 12, pp. 3022–3027, 2011.
[17]  International Institute for Population Sciences (IIPS) and Macro International, “National Family Health Survey (NFHS-3), 2005-06: India: Volume I.Mumbai: IIPS,” 2007.
[18]  Y. K. Seedat, “Diabetes mellitus in South African Indians,” British Journal of Diabetes & Vascular Disease, vol. 5, no. 5, pp. 249–251, 2005.
[19]  D. G. McLarty, C. Pollitt, and A. B. M. Swai, “Diabetes in Africa,” Diabetic Medicine, vol. 7, no. 8, pp. 670–684, 1990.
[20]  J. C. N. Mbanya, A. A. Motala, E. Sobngwi, F. K. Assah, and S. T. Enoru, “Diabetes in sub-Saharan Africa,” The Lancet, vol. 375, no. 9733, pp. 2254–2266, 2010.
[21]  V. Hall, R. W. Thomsen, O. Henriksen, and N. Lohse, “Diabetes in Sub Saharan Africa 1999–2011: epidemiology and public health implications. A systematic review,” BMC Public Health, vol. 11, p. 564, 2011.
[22]  A. Fisch, E. Pichard, T. Prazuck, H. Leblanc, Y. Sidibe, and G. Brücker, “Prevalence and risk factors of diabetes mellitus in the rural region of Mali (West Africa): a practical approach,” Diabetologia, vol. 30, no. 11, pp. 859–862, 1987.
[23]  N. M. Baldé, I. Diallo, M. D. Baldé et al., “Diabetes andimpaired fasting glucose inrural andurban populations inFuta Jallon (Guinea): prevalence andassociated risk factors,” Diabetes and Metabolism, vol. 33, no. 2, pp. 114–120, 2007.
[24]  O. O. Oladapo, L. Salako, O. Sodiq, K. Shoyinka, K. Adedapo, and A. O. Falase, “A prevalence of cardiometabolic risk factors among a rural Yoruba south-western Nigerian population: a population-based survey,” Cardiovascular Journal of Africa, vol. 21, no. 1, pp. 26–31, 2010.
[25]  T. J. Aspray, F. Mugusi, S. Rashid et al., “Rural and urban differences in diabetes prevalence in Tanzania: the role of obesity, physical inactivity and urban living,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 94, no. 6, pp. 637–644, 2000.
[26]  W. Mathenge, A. Foster, and H. Kuper, “Urbanization, ethnicity and cardiovascular risk in a population in transition in Nakuru, Kenya: a population-based survey,” BMC Public Health, vol. 10, article 569, 2010.
[27]  D. Maher, L. Waswa, K. Baisley, A. Karabarinde, N. Unwin, and H. Grosskurth, “Distribution of hyperglycaemia and related cardiovascular disease risk factors in low-income countries: a cross-sectional population-based survey in rural Uganda,” International Journal of Epidemiology, vol. 40, no. 1, pp. 160–171, 2011.
[28]  N. S. Levitt, J. M. Katzenellenbogen, D. Bradshaw, M. N. Hoffman, and F. Bonnici, “The prevalence and identification of risk factors for NIDDM in urban Africans in Cape Town, South Africa,” Diabetes Care, vol. 16, no. 4, pp. 601–607, 1993.
[29]  A. A. Motala, T. Esterhuizen, E. Gouws, F. J. Pirie, and A. K. Mahomed, “Diabetes and other disorders of glycemia in a rural South African community: prevalence and associated risk factors,” Diabetes Care, vol. 31, no. 9, pp. 1783–1788, 2008.
[30]  E. Sobngwi, J. C. Mbanya, N. C. Unwin et al., “Physical activity and its relationship with obesity, hypertension and diabetes in urban and rural Cameroon,” International Journal of Obesity and Related Metabolic Disorders, vol. 26, no. 7, pp. 1009–1016, 2002.
[31]  MOH, Cameroon Burden of Diabetes Project (Cambod): Baseline Survey Report, Ministry of Health, Cambodia, Cameroon, 2004.
[32]  J. B. Echouffo-Tcheugui, A. Dzudie, M. E. Epacka et al., “Prevalence and determinants of undiagnosed diabetes in an urban sub-Saharan African population,” Prim Care Diabetes, vol. 6, no. 3, pp. 229–234, 2012.
[33]  K. Okrainec, D. K. Banerjee, and M. J. Eisenberg, “Coronary artery disease in the developing world,” American Heart Journal, vol. 148, no. 1, pp. 7–15, 2004.
[34]  A. R. Davies, L. Smeeth, and E. M. D. Grundy, “Contribution of changes in incidence and mortality to trends in the prevalence of coronary heart disease in the UK: 1996–2005,” European Heart Journal, vol. 28, no. 17, pp. 2142–2147, 2007.
[35]  T. Laatikainen, J. Critchley, E. Vartiainen, V. Salomaa, M. Ketonen, and S. Capewell, “Explaining the decline in coronary heart disease mortality in Finland between 1982 and 1997,” American Journal of Epidemiology, vol. 162, no. 8, pp. 764–773, 2005.
[36]  R. Gupta, “Trends in hypertesnion epidemiology in India,” Journal of Human Hypertension, vol. 18, pp. 73–78, 2004.
[37]  V. Mohan, M. Deepa, S. Farooq, M. Datta, and R. Deepa, “Prevalence, awareness and control of hypertension in Chennai: the Chennai Urban Rural Epidemiology Study (CURES-52),” Journal of Association of Physicians of India, vol. 55, pp. 326–332, 2007.
[38]  P. Suriyawongpaisal, “Cardiovascular risk factor levels in urban and rural Thailand: the International Collaborative Study of Cardiovascular Disease in Asia (InterASIA),” European Journal of Cardiovascular Prevention and Rehabilitation, vol. 10, no. 4, pp. 249–257, 2003.
[39]  M. A. Sayeed, A. Banu, J. A. Haq, P. A. Khanam, H. Mahtab, and A. K. Azad Khan, “Prevalence of hypertension in Bangladesh: effect of socioeconomic risk factor on difference between rural and urban community,” Bangladesh Medical Research Council Bulletin, vol. 28, no. 1, pp. 7–18, 2002.
[40]  Global Health Observatory (GHO), “Raised Blood pressure,” 2012, http://www.who.int/gho/ncd/risk_factors/blood_pressure_prevalence_text/en/index.html.
[41]  Y. K. Seedat, “Hypertension in developing nations in sub-Saharan Africa,” Journal of Human Hypertension, vol. 14, no. 10-11, pp. 739–747, 2000.
[42]  R. Edwards, N. Unwin, F. Mugusi et al., “Hypertension prevalence and care in an urban and rural area of Tanzania,” Journal of Hypertension, vol. 18, no. 2, pp. 145–152, 2000.
[43]  K. Steyn, T. A. Gaziano, D. Bradshaw, R. Laubscher, and J. Fourie, “Hypertension in South African adults: results from the demographic and health survey, 1998,” Journal of Hypertension, vol. 19, no. 10, pp. 1717–1725, 2001.
[44]  R. Norman, T. Gaziano, R. Laubsher, K. Steyn, and D. Bradshaw, “Estimating the burden of disease attributable to high blood pressure in South Africa in 2000,” South African Medical Journal, vol. 97, no. 8, pp. 692–698, 2007.
[45]  Ministry of Public Health, Thailand Health Profile 2005-2006, Bureau of Policy and strategy, Ministry of Public Health, Nonthaburi, Thailand, 2007.
[46]  J. R. Sowers, M. Epstein, and E. D. Frohlich, “Diabetes, hypertension, and cardiovascular disease an update,” Hypertension, vol. 37, no. 4, pp. 1053–1059, 2001.
[47]  C. Arauz-Pacheco, M. A. Parrott, and P. Raskin, “The treatment of hypertension in adult patients with diabetes,” Diabetes Care, vol. 25, no. 1, pp. 134–147, 2002.
[48]  R. Klein, B. E. K. Klein, K. E. Lee, K. J. Cruickshanks, and S. E. Moss, “The incidence of hypertension in insulin-dependent diabetes,” Archives of Internal Medicine, vol. 156, no. 6, pp. 622–627, 1996.
[49]  R. Turner, I. Stratton, V. Fright, R. Holman, S. Manley, and C. Cull, “Hypertension in Diabetes Study (HDS): I. Prevalence of hypertension in newly presenting type 2 diabetic patients and the association with risk factors for cardiovascular and diabetic complications,” Journal of Hypertension, vol. 11, no. 3, pp. 309–317, 1993.
[50]  M. Berraho, Y. El Achhab, A. Benslimane, K. El Rhazi, M. Chikri, and C. Nejjari, “Hypertension and type 2 diabetes: a cross-sectional study in Morocco (EPIDIAM Study),” The Pan African Medical Journal, vol. 11, p. 52, 2012.
[51]  B. A. Broussard, S. E. Valway, S. Kaufman, S. Beaver, and D. Gohdes, “Clinical hypertension and its interaction with diabetes among American Indians and Alaska Natives: estimated rates from ambulatory care data,” Diabetes Care, vol. 16, no. 1, pp. 292–296, 1993.
[52]  F. P. Cappuccio, A. Barbato, and S. M. Kerry, “Hypertension, diabetes and cardiovascular risk in ethnic minorities in the UK,” British Journal of Diabetes & Vascular Disease, vol. 3, no. 4, pp. 286–293, 2003.
[53]  J. R. Sowers and M. Epstein, “Diabetes mellitus and associated hypertension, vascular disease, and nephropathy. An update,” Hypertension, vol. 26, no. 6 I, pp. 869–879, 1995.
[54]  J. Stamler, O. Vaccaro, J. D. Neaton, and D. Wentworth, “Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the multiple risk factor intervention trial,” Diabetes Care, vol. 16, no. 2, pp. 434–444, 1993.
[55]  J. D. Curb, S. L. Pressel, J. A. Cutler et al., “Effect of diuretic-based antihypertensive treatment on cardiovascular disease risk in older diabetic patients with isolated systolic hypertension,” The Journal of the American Medical Association, vol. 276, no. 23, pp. 1886–1892, 1996.
[56]  E. Grossman and F. Messerli, “Hypertension and diabetes,” Advances in Cardiology, vol. 45, pp. 82–106, 2008.
[57]  J. Tuomilehto, D. Rastenyte, W. H. Birkenhager et al., “Effects of calcium-channel blockade in older patients with diabetes and systolic hypertension,” The New England Journal of Medicine, vol. 340, no. 9, pp. 677–684, 1999.
[58]  United Kingdom Prospective Diabetes Study Group, “Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38,” BMJ, vol. 317, no. 7160, pp. 703–713, 1998.
[59]  Hypertension in Diabetes Study (HDS): II, “Increased risk of cardiovascular complications in hypertensive type 2 diabetic patients,” Journal of Hypertension, vol. 11, pp. 319–325, 1993.
[60]  R. B. Singh, R. Beegom, V. Rastogi, S. S. Rastogi, and V. Madhu, “Clinical characteristics and hypertension among known patients of non-insulin dependent diabetes mellitus in North and South Indians,” Journal of the Diabetic Association of India, vol. 36, pp. 45–50, 1996.
[61]  S. Jain and J. C. Patel, “Diabetes and hypertension,” Journal of the Diabetic Association of India, vol. 23, pp. 83–86, 1983.
[62]  S. R. Joshi, B. Saboo, M. Vadivale et al., “Prevalence of diagnosed and undiagnosed diabetes and hypertension in India–results from the Screening India's Twin Epidemic (SITE) study,” Diabetes Technology and Therapeutics, vol. 14, no. 1, pp. 8–15, 2012.
[63]  P. Bunnag, N. Plengvidhya, C. Deerochanawong et al., “Thailand diabetes registry project: prevalence of hypertension, treatment and control of blood pressure in hypertensive adults with type 2 diabetes,” Journal of the Medical Association of Thailand, vol. 89, no. 1, pp. S72–S77, 2006.
[64]  H. S. Lee, S. S. Lee, I. Y. Hwang et al., “Prevalence, awareness, treatment and control of hypertension in adults with diagnosed diabetes: the Fourth Korea National Health and Nutrition Examination Survey (KNHANES IV),” Journal of Human Hypertension, 2012.
[65]  U. K. Shrestha, D. L. Singh, and M. D. Bhattarai, “The prevalence of hypertension and diabetes defined by fasting and 2-h plasma glucose criteria in urban Nepal,” Diabetic Medicine, vol. 23, no. 10, pp. 1130–1135, 2006.
[66]  M. Ducorps, B. Bauduceau, H. Mayaudon, E. Sonnet, L. Groussin, and C. Castagné, “Prevalence of hypertension in a Black African diabetic population,” Archives des Maladies du Coeur et des Vaisseaux, vol. 89, no. 8, pp. 1069–1073, 1996.
[67]  C. F. Otieno, V. Vaghela, F. W. Mwendwa, J. K. Kayima, and E. N. Ogola, “Cardiovascular risk factors in patients with type 2 diabetes mellitus in Kenya: levels of control attained at the outpatient diabetic Clinic of Kenyatta National Hospital, Nairobi,” East African Medical Journal, vol. 82, no. 12, pp. S184–S190, 2005.
[68]  O. O. Ogunleye, S. O. Ogundele, J. O. Akinyemi, and A. O. Ogbera, “Clustering of hypertension, diabetes mellitus and dyslipidemia in a Nigerian population: a cross sectional study,” African Journal of Medicine & Medical Sciences, vol. 41, pp. 191–195, 2012.
[69]  M. Berraho, Y. El Achhab, A. Benslimane, K. El Rhazi, M. Chikri, and C. Nejjari, “Hypertension and type 2 diabetes: a cross-sectional study in Morocco (EPIDIAM Study),” The Pan African Medical Journal, vol. 11, p. 52, 2012.
[70]  B. C. Unadike, A. Eregie, and A. E. Ohwovoriole, “Prevalence of hypertension amongst persons with diabetes mellitus in Benin City, Nigeria,” Nigerian Journal of Clinical Practice, vol. 14, pp. 300–302, 2011.
[71]  R. Beaglehole, J. Epping-Jordan, V. Patel et al., “Improving the prevention and management of chronic disease in low-income and middle-income countries: a priority for primary health care,” The Lancet, vol. 372, no. 9642, pp. 940–949, 2008.
[72]  D. T. Jamison, J. G. Breman, A. R. Measham et al., Eds., Disease Control Priorities in Developing Countries, World Bank and Oxford University Press, Washington, DC, USA, 2nd edition, 2006.
[73]  S. MacMahon, M. H. Alderman, L. H. Lindholm, L. Liu, R. A. Sanchez, and Y. K. Seedat, “Blood-pressure-related disease is a global health priority,” The Lancet, vol. 371, no. 9623, pp. 1480–1482, 2008.
[74]  D. Lemogoum, Y. K. Seedat, A. F. B. Mabadeje et al., “Recommendations for prevention, diagnosis and management of hypertension and cardiovascular risk factors in sub-Saharan Africa,” Journal of Hypertension, vol. 21, no. 11, pp. 1993–2000, 2003.
[75]  R. Deepa, C. S. Shanthirani, R. Pradeepa, and V. Mohan, “Is the “rule of halves” in hypertension still valid?—Evidence from the Chennai Urban Population Study,” The Journal of the Association of Physicians of India, vol. 51, pp. 153–157, 2003.
[76]  I. Ranjit Unnikrishnan, R. M. Anjana, and V. Mohan, “Importance of controlling diabetes early—the concept of metabolic memory, legacy effect and the case for early insulinisation,” Journal of Association of Physicians of India, vol. 59, supplement, pp. 8–12, 2011.
[77]  S. Ebrahim, “Chronic diseases and calls to action,” International Journal of Epidemiology, vol. 37, no. 2, pp. 225–230, 2008.
[78]  G. Li, Y. Hu, W. Yang et al., “Effects of insulin resistance and insulin secretion on the efficacy of interventions to retard development of type 2 diabetes mellitus: the DA Qing IGT and Diabetes Study,” Diabetes Research and Clinical Practice, vol. 58, no. 3, pp. 193–200, 2002.
[79]  J. Tuomilehto, J. Lindstr?m, J. G. Eriksson et al., “Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance,” The New England Journal of Medicine, vol. 344, no. 18, pp. 1343–1350, 2001.
[80]  W. C. Knowler, E. Barrett-Connor, S. E. Fowler et al., “Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin,” The New England Journal of Medicine, vol. 346, no. 6, pp. 393–403, 2002.
[81]  A. Ramachandran, C. Snehalatha, S. Mary, B. Mukesh, A. D. Bhaskar, and V. Vijay, “The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1),” Diabetologia, vol. 49, no. 2, pp. 289–297, 2006.
[82]  G. Hu, N. C. Barengo, J. Tuomilehto, T. A. Lakka, A. Nissinen, and P. Jousilahti, “Relationship of physical activity and body mass index to the risk of hypertension: a prospective study in Finland,” Hypertension, vol. 43, no. 1, pp. 25–30, 2004.
[83]  The Trials of Hypertension Prevention Collaborative Research Group, “The effects of nonpharmacologic interventions on blood pressure of persons with high normal levels. Results of the trials of hypertension prevention, phase I,” The Journal of the American Medical Association, vol. 267, no. 9, pp. 1213–1220, 1992.
[84]  J. A. Cutler, “Effects of weight loss and sodium reduction intervention on blood pressure and hypertension incidence in overweight people with high-normal blood pressure: the trials of hypertension prevention, phase II,” Archives of Internal Medicine, vol. 157, no. 6, pp. 657–667, 1997.
[85]  L. J. Appel, “Effects of comprehensive lifestyle modification on blood pressure control: main results of the PREMIER clinical trial,” The Journal of the American Medical Association, vol. 289, no. 16, pp. 2083–2093, 2003.
[86]  The Diabetes Control and Complications Trial Research Group, “The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus,” The New England Journal of Medicine, vol. 329, pp. 977–986, 1993.
[87]  R. Turner, “Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33),” The Lancet, vol. 352, no. 9131, pp. 837–853, 1998.
[88]  M. Shichiri, H. Kishikawa, Y. Ohkubo, and N. Wake, “Long-term results of the Kumamoto Study on optimal diabetes control in type 2 diabetic patients,” Diabetes Care, vol. 23, no. 2, pp. B21–B29, 2000.
[89]  P. G?de, H. Lund-Andersen, H. H. Parving, and O. Pedersen, “Effect of a multifactorial intervention on mortality in type 2 diabetes,” The New England Journal of Medicine, vol. 358, no. 6, pp. 580–591, 2008.
[90]  The Action to Control Cardiovascular Risk in Diabetes Study Group, “Effects of intensive glucose lowering in type 2 diabetes,” The New England Journal of Medicine, vol. 358, pp. 2545–2559, 2008.
[91]  American Diabetes Association, “Standards of medical care in diabetes-2008,” Diabetes Care, vol. 31, supplement 1, pp. S12–S54, 2008.
[92]  J. S. Skyler, R. Bergenstal, R. O. Bonow et al., “Intensive glycemic control and the prevention of cardiovascular events: implications of the ACCORD, ADVANCE, and VA diabetes trials: a position statement of the American Diabetes Association and a scientific statement of the American College of Cardiology Foundation and the American Heart Association,” Diabetes Care, vol. 32, no. 1, pp. 187–192, 2009.
[93]  J. B. Buse, H. N. Ginsberg, G. L. Bakris et al., “Primary prevention of cardiovascular diseases in people with diabetes mellitus: a scientific statement from the American Heart Association and the American Diabetes Association,” Circulation, vol. 115, no. 1, pp. 114–126, 2007.
[94]  S. A. Mazzuca, F. Vinicor, R. M. Einterz, W. M. Tierney, J. A. Norton, and L. A. Kalasinski, “Effects of the clinical environment on physicians' response to postgraduate medical education,” American Educational Research Journal, vol. 27, no. 3, pp. 473–488, 1990.
[95]  E. M. Benjamin, M. S. Schneider, and K. T. Hinchey, “Implementing practice guidelines for diabetes care using problem-based learning: a prospective controlled trial using firm systems,” Diabetes Care, vol. 22, no. 10, pp. 1672–1678, 1999.
[96]  D. Litaker, L. C. Mion, L. Planavsky, C. Kippes, N. Mehta, and J. Frolkis, “Physician-nurse practitioner teams in chronic disease management: the impact on costs, clinical effectiveness, and patients' perception of care,” Journal of Interprofessional Care, vol. 17, no. 3, pp. 223–237, 2003.
[97]  L. Jovanovic, “Closing the gap: effect of diabetes case management on glycemic control among low-income ethnic minority populations. The California Medi-Cal type 2 diabetes study,” Diabetes Care, vol. 27, no. 1, pp. 95–103, 2004.
[98]  H. M. Choe, S. Mitrovich, D. Dubay, R. A. Hayward, S. L. Krein, and S. Vijan, “Proactive case management of high-risk patients with type 2 diabetes mellitus by a clinical pharmacist: a randomized controlled trial,” American Journal of Managed Care, vol. 11, no. 4, pp. 253–260, 2005.
[99]  R. A. Gabbay, I. Lendel, T. M. Saleem et al., “Nurse case management improves blood pressure, emotional distress and diabetes complication screening,” Diabetes Research and Clinical Practice, vol. 71, no. 1, pp. 28–35, 2006.
[100]  Pan American Health Organization, Veracruz Project for the Improvement of Diabetes Care (VIDA): Final Report, PAHO, Washington, DC, USA, 2007.
[101]  T. L. Gary, M. Batts-Turner, H. C. Yeh et al., “The effects of a nurse case manager and a community health worker team on diabetic control, emergency department visits, and hospitalizations among urban African Americans with type 2 diabetes mellitus: a randomized controlled trial,” Archives of Internal Medicine, vol. 169, no. 19, pp. 1788–1794, 2009.
[102]  R. Coleman, G. Gill, and D. Wilkinson, “Noncommunicable disease management in resource-poor settings: a primary care model from rural South Africa,” Bulletin of the World Health Organization, vol. 76, no. 6, pp. 633–640, 1998.
[103]  A. Pal, V. W. A. Mbarika, F. Cobb-Payton, P. Datta, and S. McCoy, “Telemedicine diffusion in a developing country: the case of India (March 2004),” IEEE Transactions on Information Technology in Biomedicine, vol. 9, no. 1, pp. 59–65, 2005.
[104]  A. Geissbuhler, O. Ly, C. Lovis, and J. F. L'Haire, “Telemedicine in Western Africa: lessons learned from a pilot project in Mali, perspectives and recommendations,” AMIA. Annual Symposium Proceedings, pp. 249–253, 2003.
[105]  C. O. Bagayoko, H. Müller, and A. Geissbuhler, “Assessment of Internet-based tele-medicine in Africa (the RAFT project),” Computerized Medical Imaging and Graphics, vol. 30, no. 6-7, pp. 407–416, 2006.
[106]  V. T. Bai, V. Murali, R. Kim, and S. K. Srivatsa, “Teleophthalmology-based rural eye care in India,” Telemedicine Journal and e-Health, vol. 13, no. 3, pp. 313–321, 2007.
[107]  V. Prathiba and M. Rema, “Teleophthalmology: a model for eye care delivery in rural and underserved areas of India,” International Journal of Family Medicine, vol. 2011, Article ID 683267, 4 pages, 2011.
[108]  V. Mohan, M. Deepa, R. Pradeepa et al., “Prevention of diabetes in rural India with a telemedicine intervention,” Journal of Diabetes Science and Technology, vol. 6, no. 6, pp. 1355–1364, 2012.
[109]  V. Patel, S. Chatterji, D. Chisholm et al., “Chronic diseases and injuries in India,” The Lancet, vol. 377, no. 9763, pp. 413–428, 2011.
[110]  A. Kapur, “Economic analysis of diabetes care,” Indian Journal of Medical Research, vol. 125, no. 3, pp. 473–482, 2007.
[111]  R. Rodrigo and S. Rajapakse, “Current Status of HIV/AIDS in South Asia,” Journal of Global Infectious Diseases, vol. 1, pp. 93–101, 2009.
[112]  J. van Olmen, F. Schellevis, W. Van Damme, G. Kegels, and F. Rasschaert, “Management of chronic diseases in sub-Saharan Africa: cross-fertilisation between HIV/AIDS and diabetes care,” Journal of Tropical Medicine, vol. 2012, Article ID 349312, 10 pages, 2012.
[113]  R. Geneau and G. Hallen, “Toward a systemic research agenda for addressing the joint epidemics of HIV/AIDS and non communicable diseases,” AIDS, vol. 26, supplement 1, pp. S7–S10, 2012.
[114]  S. O. Oti, “HIV and non communicable diseases: a case for health system building,” Current Opinion in HIV and AIDS, vol. 8, pp. 65–69, 2013.
[115]  S. M. Tollman, K. Kahn, B. Sartorius, M. A. Collinson, S. J. Clark, and M. L. Garenne, “Implications of mortality transition for primary health care in rural South Africa: a population-based surveillance study,” The Lancet, vol. 372, no. 9642, pp. 893–901, 2008.
[116]  B. Janssens, W. Van Damme, B. Raleigh et al., “Offering integrated care for HIV/AIDS, diabetes and hypertension within chronic disease clinics in Cambodia,” Bulletin of the World Health Organization, vol. 85, no. 11, pp. 880–885, 2007.
[117]  World Health Organization, “Innovative care for chronic conditions: building blocks for action: global report,” 2002, http://www.who.int/chp/knowledge/publications/iccc_ch3.pdf.
[118]  J. E. Epping-Jordan, S. D. Pruitt, R. Bengoa, and E. H. Wagner, “Improving the quality of health care for chronic conditions,” Quality and Safety in Health Care, vol. 13, no. 4, pp. 299–305, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133