全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Role of the Kidneys in Resistant Hypertension

DOI: 10.4061/2011/143471

Full-Text   Cite this paper   Add to My Lib

Abstract:

Resistant hypertension is a failure to achieve goal BP (<140/90?mm?Hg for the overall population and <130/80?mm?Hg for those with diabetes mellitus or chronic kidney disease) in a patient who adheres to maximum tolerated doses of 3 antihypertensive drugs including a diuretic. The kidneys play a critical role in long-term regulation of blood pressure. Blunted pressure natriuresis, with resultant increase in extracellular fluid volume, is an important cause of resistant hypertension. Activation of the renin-angiotensin-aldosterone system, increased renal sympathetic nervous system activity and increased sodium reabsorption are important renal mechanisms. Successful treatment requires identification and reversal of lifestyle factors or drugs contributing to treatment resistance, diagnosis and appropriate treatment of secondary causes of hypertension, use of effective multidrug regimens and optimization of diuretic therapy. Since inappropriate renal salt retention underlies most cases of drug-resistant hypertension, the therapeutic focus should be on improving salt depleting therapy by assessing and, if necessary, reducing dietary salt intake, optimizing diuretic therapy, and adding a mineralocorticoid antagonist if there are no contraindications. 1. Introduction The Joint National Committee (JNC) 7 defined resistant hypertension as failure to achieve goal blood pressure (BP) (<140/90?mm?Hg for the overall population and <130/80?mm?Hg for those with diabetes mellitus or chronic kidney disease) in a patient who adheres to maximum tolerated doses of 3 antihypertensive drugs including a diuretic. An increasing number of patients, especially the aged, those with diabetes or who are African American, meet this definition. However, it is important to rule out white coat hypertension by asking the patient to record their own home blood pressures and undertaking an ambulatory blood pressure monitor if the results are equivocal. A careful enquiry about whether the patient is taking the prescribed medications and if there are adverse effects that are causing concern may give clues to noncompliance. In some cases, it may be useful to measure blood or urine drug levels, for example of diuretics, to check for noncompliance. A recent study of African Americans with hypertensive focal segmental glomerulosclerosis [1] has linked a single nucleotide polymorphism for the apolipoprotein L1 gene to the disease but this is not yet available as a diagnostic test. Since aging increases the burden of vascular disease, resistant hypertension and its consequences are more common in

References

[1]  G. Genovese, D. J. Friedman, M. D. Ross et al., “Association of trypanolytic ApoL1 variants with kidney disease in African Americans,” Science, vol. 329, no. 5993, pp. 841–845, 2010.
[2]  A. C. Guyton, R. D. Manning Jr., J. E. Hall, R. A. Norman Jr., D. B. Young, and Y. J. Pan, “The pathogenic role of the kidney,” Journal of Cardiovascular Pharmacology, vol. 6, supplement 1, pp. S151–S161, 1984.
[3]  H. A. Koomans, J. C. Roos, and P. Boer, “Salt sensitivity of blood pressure in chronic renal failure. Evidence for renal control of body fluid distribution in man,” Hypertension, vol. 4, no. 2, pp. 190–197, 1982.
[4]  K. K. Gaddam, M. K. Nishizaka, M. N. Pratt-Ubunama et al., “Characterization of resistant hypertension: association between resistant hypertension, aldosterone, and persistent intravascular volume expansion,” Archives of Internal Medicine, vol. 168, no. 11, pp. 1159–1164, 2008.
[5]  D. C. Brater, “Anti-inflammatory agents and renal function,” Seminars in Arthritis and Rheumatism, vol. 32, no. 3, pp. 33–42, 2002.
[6]  H. Goldblatt, “Studies on experimental hypertension,” Annals of Internal Medicine, vol. 11, p. 69, 1937.
[7]  H. R. Brunner, J. D. Kirshman, J. E. Sealey, and J. H. Laragh, “Hypertension of renal origin: evidence for two different mechanisms,” Science, vol. 174, no. 4016, pp. 1344–1346, 1971.
[8]  J. P. Granger and C. G. Schnackenberg, “Renal mechanisms of angiotensin II-induced hypertension,” Seminars in Nephrology, vol. 20, no. 5, pp. 417–425, 2000.
[9]  K. Wheatley, N. Ives, R. Gray et al., “Revascularization versus medical therapy for renal-artery stenosis,” New England Journal of Medicine, vol. 361, no. 20, pp. 1953–1962, 2009.
[10]  B. C. Van Jaarsveld, F. H. M. Derkx, P. Krijnen et al., “Hypertension resistant to two-drug treatment' is a useful criterion to select patients for angiography: the 'Dutch Renal Artery Stenosis Intervention Cooperative' (DRASTIC) study,” Contributions to Nephrology, vol. 119, pp. 54–58, 1996.
[11]  L. Bax, A. J. J. Woittiez, H. J. Kouwenberg et al., “Stent placement in patients with atherosclerotic renal artery stenosis and impaired renal function: a randomized trial,” Annals of Internal Medicine, vol. 150, no. 12, pp. 840–848, 2009.
[12]  T. P. Murphy, C. J. Cooper, L. D. Dworkin et al., “The Cardiovascular Outcomes with Renal Atherosclerotic Lesions (CORAL) study: rationale and methods,” Journal of Vascular and Interventional Radiology, vol. 16, no. 10, pp. 1295–1300, 2005.
[13]  C. Marcantoni, L. Zanoli, S. Rastelli et al., “Stenting of renal artery stenosis in coronary artery disease (RAS-CAD) study: a prospective, randomized trial,” Journal of Nephrology, vol. 22, no. 1, pp. 13–16, 2009.
[14]  M. J. Bloch, D. W. Trost, T. G. Pickering, T. A. Sos, and P. August, “Prevention of recurrent pulmonary edema in patients with bilateral renovascular disease through renal artery stent placement,” American Journal of Hypertension, vol. 12, no. 1, part 1, pp. 1–7, 1999.
[15]  G. F. DiBona and M. Esler, “Translational medicine: the antihypertensive effect of renal denervation,” American Journal of Physiology, vol. 298, no. 2, pp. R245–R253, 2010.
[16]  U. C. Kopp, L. A. Smith, and G. F. DiBona, “Renorenal reflexes: neural components of ipsilateral and contralateral renal responses,” The American Journal of Physiology, vol. 249, no. 4, pp. F507–F517, 1985.
[17]  R. L. Converse, T. N. Jacobsen, R. D. Toto et al., “Sympathetic overactivity in patients with chronic renal failure,” New England Journal of Medicine, vol. 327, no. 27, pp. 1912–1918, 1992.
[18]  H. Krum, M. Schlaich, R. Whitbourn et al., “Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study,” The Lancet, vol. 373, no. 9671, pp. 1275–1281, 2009.
[19]  M. D. Esler, H. Krum, P. A. Sobotka et al., “Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial,” The Lancet, vol. 376, no. 9756, pp. 1903–1909, 2010.
[20]  R. Zatz and C. Baylis, “Chronic nitric oxide inhibition model six years on,” Hypertension, vol. 32, no. 6, pp. 958–964, 1998.
[21]  D. Wang, J. Iversen, C. S. Wilcox, and S. Strandgaard, “Endothelial dysfunction and reduced nitric oxide in resistance arteries in autosomal-dominant polycystic kidney disease,” Kidney International, vol. 64, no. 4, pp. 1381–1388, 2003.
[22]  P. S. Modlinger, C. S. Wilcox, and S. Aslam, “Nitric oxide, oxidative stress, and progression of chronic renal failure,” Seminars in Nephrology, vol. 24, no. 4, pp. 354–365, 2004.
[23]  D. Wang, S. Strandgaard, J. Iversen, and C. S. Wilcox, “Asymmetric dimethylarginine, oxidative stress, and vascular nitric oxide synthase in essential hypertension,” American Journal of Physiology, vol. 296, no. 2, pp. R195–R200, 2009.
[24]  W. J. Welch, A. Tojo, and C. S. Wilcox, “Roles of NO and oxygen radicals in tubuloglomerular feedback in SHR,” American Journal of Physiology, vol. 278, no. 5, pp. F769–F776, 2000.
[25]  D. Wang, T. Chabrashvili, and C. S. Wilcox, “Enhanced contractility of renal afferent arterioles from angiotensin-infused rabbits: roles of oxidative stress, thromboxane prostanoid receptors, and endothelium,” Circulation Research, vol. 94, no. 11, pp. 1436–1442, 2004.
[26]  C. S. Wilcox, “Oxidative stress and nitric oxide deficiency in the kidney: a critical link to hypertension?” American Journal of Physiology, vol. 289, no. 4, pp. R913–R935, 2005.
[27]  J. J. Oliver, J. W. Dear, and D. J. Webb, “Clinical potential of combined organic nitrate and phosphodiesterase type 5 inhibitor in treatment-resistant hypertension,” Hypertension, vol. 56, no. 1, pp. 62–67, 2010.
[28]  A. G. Johnson, T. V. Nguyen, and R. O. Day, “Do nonsteroidal anti-inflammatory drugs affect blood pressure? A meta-analysis,” Annals of Internal Medicine, vol. 121, no. 4, pp. 289–300, 1994.
[29]  G. L. Bakris and S. R. Kern, “Renal dysfunction resulting from NSAIDs,” American Family Physician, vol. 40, no. 4, pp. 199–204, 1989.
[30]  A. Whelton, W. B. White, A. E. Bello, et al., “Effects of celecoxib and rofecoxib on blood pressure and edema in patients more than or equal to 65 years of age with systemic hypertension and osteoarthritis,” American Journal of Cardiology, vol. 90, pp. 959–963, 2002.
[31]  P. Schimmer Bernard and L. Parker Keith, “Adrenocorticotropic hormone; adrenocortical steroids and their synthetic analogs; inhibitors of the synthesis and actions of adrenocortical hormones,” in Goodman & Gilman's The Pharmacological Basis of Therapeutics, L. L. Brunton, J. S. Lazo, and K. L. Parker, Eds., chapter 59, 2005.
[32]  B. R. Walker and C. R. W. Edwards, “Licorice-induced hypertension and syndromes of apparent mineralocorticoid excess,” Endocrinology and Metabolism Clinics of North America, vol. 23, no. 2, pp. 359–377, 1994.
[33]  C. S. Wilcox, X. Deng, A. H. Doll, H. Snellen, and W. J. Welch, “Nitric oxide mediates renal vasodilatation during erythropoietin-induced polycythemia,” Kidney International, vol. 44, no. 2, pp. 430–435, 1993.
[34]  R. Krapf and H. N. Hulter, “Arterial hypertension induced by erythropoietin and erythropoiesis-stimulating agents (ESA),” Clinical Journal of the American Society of Nephrology, vol. 4, no. 2, pp. 470–480, 2009.
[35]  N. Robert, G. W. Wong, and J. M. Wright, “Effect of cyclosporine on blood pressure,” Cochrane Database of Systematic Reviews, no. 1, Article ID CD007893, 2010.
[36]  R. W. Braith, R. M. Mills Jr., C. S. Wilcox, G. L. Davis, and C. E. Wood, “Breakdown of blood pressure and body fluid homeostasis in heart transplant recipients,” Journal of the American College of Cardiology, vol. 27, no. 2, pp. 375–383, 1996.
[37]  P. Ruggenenti, N. Perico, L. Mosconi et al., “Calcium channel blockers protect transplant patients from cyclosporine-induced daily renal hypoperfusion,” Kidney International, vol. 43, no. 3, pp. 706–711, 1993.
[38]  T. E. Pesavento, P. A. Jones, B. A. Julian, and J. J. Curtis, “Amlodipine increases cyclosporine levels in hypertensive renal transplant patients: results of a prospective study,” Journal of the American Society of Nephrology, vol. 7, no. 6, pp. 831–835, 1996.
[39]  N. Chapman, J. Dobson, S. Wilson et al., “Effect of spironolactone on blood pressure in subjects with resistant hypertension,” Hypertension, vol. 49, no. 4, pp. 839–845, 2007.
[40]  M. K. Nishizaka, M. A. Zaman, and D. A. Calhoun, “Efficacy of lowdose spironolactone in subjects with resistant hypertension,” American Journal of Hypertension, vol. 16, no. 11, pp. 925–930, 2003.
[41]  E. Gross, M. Rothstein, S. Dombek, and H. I. Juknis, “Effect of spironolactone on blood pressure and the renin-angiotensin-aldosterone system in oligo-anuric hemodialysis patients,” American Journal of Kidney Diseases, vol. 46, no. 1, pp. 94–101, 2005.
[42]  F. H. Messerli, “Vasodilatory edema: a common side effect of antihypertensive therapy,” Current Cardiology Reports, vol. 4, no. 6, pp. 479–482, 2002.
[43]  G. Grassi, A. Facchini, F. Q. Trevano et al., “Obstructive sleep apnea-dependent and -independent adrenergic activation in obesity,” Hypertension, vol. 46, no. 2, pp. 321–325, 2005.
[44]  L. Lavie, A. Hefetz, R. Luboshitzky, and P. Lavie, “Plasma levels of nitric oxide and L-arginine in sleep apnea patients: effects of nCPAP treatment,” Journal of Molecular Neuroscience, vol. 21, no. 1, pp. 57–63, 2003.
[45]  K. Gaddam, E. Pimenta, S. J. Thomas et al., “Spironolactone reduces severity of obstructive sleep apnoea in patients with resistant hypertension: a preliminary report,” Journal of Human Hypertension, vol. 24, pp. 532–537, 2009.
[46]  Y. Saito, K. Nakao, M. Mukoyama, and H. Imura, “Increased plasma endothelin level in patients with essential hypertension,” New England Journal of Medicine, vol. 322, no. 3, p. 205, 1990.
[47]  M. A. Weber, H. Black, G. Bakris et al., “A selective endothelin-receptor antagonist to reduce blood pressure in patients with treatment-resistant hypertension: a randomised, double-blind, placebo-controlled trial,” The Lancet, vol. 374, no. 9699, pp. 1423–1431, 2009.
[48]  G. L. Bakris, L. H. Lindholm, H. R. Black et al., “Divergent results using clinic and ambulatory blood pressures: report of a darusentan-resistant hypertension trial,” Hypertension, vol. 56, no. 5, pp. 824–830, 2010.
[49]  F. J. He and G. A. MacGregor, “Effect of longer-term modest salt reduction on blood pressure,” Cochrane Database of Systematic Reviews, no. 3, Article ID CD004937, 2004.
[50]  M. K. Nishizaka, M. Pratt-Ubunama, M. A. Zaman, S. Cofield, and D. A. Calhoun, “Validity of plasma aldosterone-to-renin activity ratio in African American and white subjects with resistant hypertension,” American Journal of Hypertension, vol. 18, no. 6, pp. 805–812, 2005.
[51]  A. V. Chobanian, G. L. Bakris, H. R. Black et al., “Seventh report of the Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure,” Hypertension, vol. 42, no. 6, pp. 1206–1252, 2003.
[52]  E. Pimenta, K. K. Gaddam, S. Oparil et al., “Effects of dietary sodium reduction on blood pressure in subjects with resistant hypertension: results from a randomized trial,” Hypertension, vol. 54, no. 3, pp. 475–481, 2009.
[53]  D. Ellison and C. S. Wilcox, “Diuretics,” in The Kidney, B. Brenner, Ed., pp. 1648–1678, Saunders and Elsevier, Philadelphia, Pa, USA, 8th edition, 2008.
[54]  N. Khosla, D. Y. Chua, W. J. Elliott, and G. L. Bakris, “Are chlorthalidone and hydrochlorothiazide equivalent blood-pressure-lowering medications?” Journal of Clinical Hypertension, vol. 7, no. 6, pp. 354–356, 2005.
[55]  M. E. Ernst, B. L. Carter, C. J. Goerdt et al., “Comparative antihypertensive effects of hydrochlorothiazide and chlorthalidone on ambulatory and office blood pressure,” Hypertension, vol. 47, no. 3, pp. 352–358, 2006.
[56]  N. R. Loon, C. S. Wilcox, and R. J. Unwin, “Mechanism of impaired natriuretic response to furosemide during prolonged therapy,” Kidney International, vol. 36, no. 4, pp. 682–689, 1989.
[57]  J. R. Voelker Jr., D. Cartwright-Brown, S. Anderson et al., “Comparison of loop diuresis in patients with chronic renal insufficiency,” Kidney International, vol. 32, no. 4, pp. 572–578, 1987.
[58]  C. S. Wilcox, “Metabolic and adverse effects of diuretics,” Seminars in Nephrology, vol. 19, no. 6, pp. 557–568, 1999.
[59]  C. S. Wilcox, W. E. Mitch, and R. A. Kelly, “Response of the kidney to furosemide. I. Effects of salt intake and renal compensation,” Journal of Laboratory and Clinical Medicine, vol. 102, no. 3, pp. 450–458, 1983.
[60]  G. L. Wollam, R. C. Tarazi, E. L. Bravo, and H. P. Dustan, “Diuretic potency of combined hydrochlorothiazide and furosemide therapy in patients with azotemia,” American Journal of Medicine, vol. 72, no. 6, pp. 929–938, 1982.
[61]  D. Fliser, M. Schr?ter, M. Neubeck, and E. Ritz, “Coadministration of thiazides increases the efficacy of loop diuretics even in patients with advanced renal failure,” Kidney International, vol. 46, no. 2, pp. 482–488, 1994.
[62]  J. Ouzan, C. Pérault, A. M. Lincoff, E. Carré, and M. Mertes, “The role of spironolactone in the treatment of patients with refractory hypertension,” American Journal of Hypertension, vol. 15, no. 4, pp. 333–339, 2002.
[63]  M. C. Houston and P. E. Johnston, “Essential hypertension: new insights and controversies in treatment with diuretics,” Southern Medical Journal, vol. 79, no. 8, pp. 984–990, 1986.
[64]  S. J. Hood, K. P. Taylor, M. J. Ashby, and M. J. Brown, “The Spironolactone, Amiloride, Losartan, and Thiazide (SALT) double-blind crossover trial in patients with low-renin hypertension and elevated aldosterone-renin ratio,” Circulation, vol. 116, no. 3, pp. 268–275, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133