We ascertained the prevalence of resistant hypertension (RH) among blacks and determined whether RH patients are at greater risk for obstructive sleep apnea (OSA) than hypertensives. Method. Data emanated from Metabolic Syndrome Outcome Study (MetSO), a study investigating metabolic syndrome among blacks in the primary-care setting. Sample of 200 patients (mean age = 63 ± 13 years; female = 61%) with a diagnosis of hypertension provided subjective and clinical data. RH was defined using the JNC 7and European Society guidelines. We assessed OSA risk using the Apnea Risk Evaluation System ARES), defining high risk as a total ARES score ≥6. Results. Overall, 26% met criteria for RH and 40% were at high OSA risk. Logistic regression analysis, adjusting for effects of age, gender, and medical co morbidities, showed that patients with RH were nearly 2.5 times more likely to be at high OSA risk, relative to those with hypertension (OR = 2.46, 95% CI: 1.03–5.88, . Conclusion. Our findings show that the prevalence of RH among blacks fell within the range of RH for the general hypertensive population (3–29%). However, patients with RH were at significantly greater risk of OSA compared to patients with hypertension. 1. Introduction Resistant hypertension (RH) is defined as blood pressure that remains above goal (<140/90) in spite of concurrent use of three antihypertensive agents of different classes, one of which being a diuretic; all agents should be prescribed at optimal dosage amounts. Furthermore, observed blood pressure (BP) requiring ≥4 medications to reach controlled BP should be considered resistant to treatment [1, 2]. Longitudinal studies and clinical trials have shown that RH is a common public health problem. Data from the ALLHAT trial indicated that the prevalence of resistant hypertension is 27% [3]. The Outpatient Quality Improvement Network’s Hypertension Initiative, sampling primary-care clinics in South Carolina, North Carolina, and Georgia ( hypertensive patients), estimated that the overall prevalence of RH is about 16% [4]. Of note, 50% of the participants in both the National Health and Nutrition Examination Survey (NHANES) [5] and Framingham Heart Study [6] were able to reach a therapeutic goal of <140/ 90?mmHg. Those comprising the group who failed to reach the therapeutic goal likely included resistant hypertensives and pseudoresistant hypertensives. Given the increased trends in metabolic syndrome and obstructive sleep apnea (OSA), RH management will constitute a daunting task, with important social and economic ramifications. The
References
[1]
D. A. Calhoun, D. Jones, S. Textor, D. C. Goff, T. P. Murphy, and R. D. Toto, “Resistant hypertension: diagnosis, evaluation, and treatment: a scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research,” Circulation, vol. 117, no. 25, pp. e510–e526, 2008.
[2]
D. A. Calhoun, D. Jones, S. Textor, D. C. Goff, T. P. Murphy, and R. D. Toto, “Resistant hypertension: siagnosis, evaluation, and treatment a scientific statement from the american heart association professional education committee of the council for high blood pressure research,” Hypertension, vol. 51, no. 6, pp. 1403–1419, 2008.
[3]
W. C. Cushman, C. E. Ford, J. A. Cutler, K. L. Margolis, B. R. Davis, and R. H. Grimm, “Success and predictors of blood pressure control in diverse North American settings: the antihypertensive and lipid-lowering treatment to prevent heart attact trial (ALLHAT),” Journal of Clinical Hypertension, vol. 4, no. 6, pp. 393–404, 2002.
[4]
B. M. Egan, D. T. Lackland, and J. N. Basile, “American Society of Hypertension regional chapters: leveraging the impact of the Clinical Hypertension Specialist in the local community,” American Journal of Hypertension, vol. 15, no. 4 I, pp. 372–379, 2002.
[5]
I. Hajjar and T. A. Kotchen, “Trends in prevalence, awareness, treatment, and control of hypertension in the United States, 1988–2000,” Journal of the American Medical Association, vol. 290, no. 2, pp. 199–206, 2003.
[6]
D. M. Lloyd-Jones, J. C. Evans, M. G. Larson, C. J. O'Donnell, E. J. Roccella, and D. Levy, “Differential control of systolic and diastolic blood pressure factors associated with lack of blood pressure control in the community,” Hypertension, vol. 36, no. 4, pp. 594–599, 2000.
[7]
F. Siyam, S. A. Brietzke, and J. R. Sowers, “Resistant hypertension in office practice: a clinical approach,” Hospital Practice, vol. 38, no. 4, pp. 90–97, 2010.
[8]
A. V. Chobanian, G. L. Bakris, H. R. Black et al., “The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: The JNC 7 Report,” Journal of the American Medical Association, vol. 289, no. 19, pp. 2560–2572, 2003.
[9]
V. K. Somers, D. P. White, R. Amin et al., “Sleep apnea and cardiovascular disease. An American Heart Association/American College of Cardiology Foundation Scientific Statement from the American Heart Association Council for high blood pressure research professional education committee, Council on Clinical Cardiology, Stroke Council, and Council on Cardiovascular Nursing in Collaboration with the National Heart, Lung,” Journal of the American College of Cardiology, vol. 52, no. 8, pp. 686–717, 2008.
[10]
M. M. Ohayon, C. Guilleminault, R. G. Priest, J. Zulley, and S. Smirne, “Is sleep-disordered breathing an independent risk factor for hypertension in the general population (13,057 subjects)?” Journal of Psychosomatic Research, vol. 48, no. 6, pp. 593–601, 2000.
[11]
T. Young, P. Peppard, M. Palta et al., “Population-based study of sleep-disordered breathing as a risk factor for hypertension,” Archives of Internal Medicine, vol. 157, no. 15, pp. 1746–1752, 1997.
[12]
P. Lavie, P. Herer, and V. Hoffstein, “Obstructive sleep apnoea syndrome as a risk factor for hypertension: population study,” British Medical Journal, vol. 320, no. 7233, pp. 479–482, 2000.
[13]
A. G. Logan, S. M. Perlikowski, A. Mente et al., “High prevalence of unrecognized sleep apnoea in drug-resistant hypertension,” Journal of Hypertension, vol. 19, no. 12, pp. 2271–2277, 2001.
[14]
M. N. Pratt-Ubunama, M. K. Nishizaka, R. L. Boedefeld, S. S. Cofield, S. M. Harding, and D. A. Calhoun, “Plasma aldosterone is related to severity of obstructive sleep apnea in subjects with resistant hypertension,” Chest, vol. 131, no. 2, pp. 453–459, 2007.
[15]
W. C. Cushman, C. E. Ford, P. T. Einhorn et al., “Blood pressure control by drug group in the antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT),” Journal of Clinical Hypertension, vol. 10, no. 10, pp. 751–760, 2008.
[16]
V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, and T. M. Brown, “Heart disease and stroke statistics—2011 Update. A Report from the American Heart Association,” Circulation, vol. 123, no. 4, pp. e18–e209, 2011.
[17]
G. Jean-Louis, F. Zizi, G. Casimir, J. DiPalma, and R. Mukherji, “Sleep-disordered breathing and hypertension among African Americans,” Journal of Human Hypertension, vol. 19, no. 6, pp. 485–490, 2005.
[18]
D. J. Levendowski, T. Morgan, J. Montague, V. Melzer, C. Berka, and P. R. Westbrook, “Prevalence of probable obstructive sleep apnea risk and severity in a population of dental patients,” Sleep and Breathing, vol. 12, no. 4, pp. 303–309, 2008.
[19]
D. J. Levendowski, E. M. Olmstead, D. Popovich, D. Carper, C. Berka, and P. R. Westbrook, “Assessment of obstructive sleep apnea risk and severity in truck drivers: validation of a screening questionnaire,” Sleep Diagnosis and Therapy, vol. 2, no. 2, pp. 20–26, 2007.
[20]
E. S. Ford, “Prevalence of the metabolic syndrome defined by the international diabetes federation among adults in the U.S,” Diabetes Care, vol. 28, no. 11, pp. 2745–2749, 2005.
[21]
T. G. Pickering, J. E. Hall, L. J. Appel et al., “Recommendations for blood pressure measurement in humans and experimental animals—part 1: blood pressure measurement in humans—a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on high blood pressure research,” Circulation, vol. 111, no. 5, pp. 697–716, 2005.
[22]
L. Kennedy and W. H. Herman, “Glycated hemoglobin assessment in clinical practice: comparison of the A1cNow point-of-care device with central laboratory testing (GOAL A1C study),” Diabetes Technology and Therapeutics, vol. 7, no. 6, pp. 907–912, 2005.
[23]
S. A. Chung, S. Jairam, M. R. G. Hussain, and C. M. Shapiro, “How, what, and why of sleep apnea. Perspectives for primary care physicians,” Canadian Family Physician, vol. 48, pp. 1073–1080, 2002.
[24]
T. Young, L. Evans, L. Finn, and M. Palta, “Estimation of the clinically diagnosed proportion of sleep apnea syndrome in middle-aged men and women,” Sleep, vol. 20, no. 9, pp. 705–706, 1997.
[25]
S. K. Ramachandran and L. A. Josephs, “A meta-analysis of clinical screening tests for obstructive sleep apnea,” Anesthesiology, vol. 110, no. 4, pp. 928–939, 2009.
[26]
A. C. Elliott, “Primary care assessment and management of sleep disorders,” Journal of the American Academy of Nurse Practitioners, vol. 13, no. 9, pp. 409–418, 2001.
[27]
M. R. Jonovich and J. D. Bisognano, “Management of hypertension in chronic heart failure,” 2009.
[28]
T. A. Farley, M. A. Dalal, F. Mostashari, and T. R. Frieden, “Deaths preventable in the U.S. by improvements in use of clinical preventive services,” American Journal of Preventive Medicine, vol. 38, no. 6, pp. 600–609, 2010.
[29]
J. Q. Xu, K. D. Kochanek, and B. Tejada-Vera, “Deaths: final data for 2007,” National Vital Statistics Reports, vol. 58, no. 19, 2010.
[30]
M. D. Drennan, D. F. Kripke, H. A. Klemfuss, and J. D. Moore, “Potassium affects actigraph-identified sleep,” Sleep, vol. 15, no. 5, pp. 430–433, 1992.
[31]
N. J. Buchner, B. M. Sanner, J. Borgel, and L. C. Rump, “Continuous positive airway pressure treatment of mild to moderate obstructive sleep apnea reduces cardiovascular risk,” American Journal of Respiratory and Critical Care Medicine, vol. 176, no. 12, pp. 1274–1280, 2007.
[32]
S. Redline, P. V. Tishler, M. G. Hans, T. D. Tosteson, K. P. Strohl, and K. Spry, “Racial differences in sleep-disordered breathing in African-Americans and Caucasians,” American Journal of Respiratory and Critical Care Medicine, vol. 155, no. 1, pp. 186–192, 1997.
[33]
G. Jean-Louis, H. von Gizycki, F. Zizi, A. Dharawat, J. M. Lazar, and C. D. Brown, “Evaluation of sleep apnea in a sample of black patients,” Journal of Clinical Sleep Medicine, vol. 4, no. 5, pp. 421–425, 2008.
[34]
E. M. Ball, R. D. Simon Jr., A. A. Tall, M. B. Banks, G. Nino-Murcia, and W. C. Dement, “Diagnosis and treatment of sleep apnea within the community: the Walla Walla project,” Archives of Internal Medicine, vol. 157, no. 4, pp. 419–424, 1997.
[35]
A. Bahammam and M. Kryger, “Decision making in obstructive sleep-disordered breathing: putting it all together,” Otolaryngologic Clinics of North America, vol. 32, no. 2, pp. 333–348, 1999.
[36]
S. A. Chung, S. Jairam, M. R. G. Hussain, and C. M. Shapiro, “Knowledge of sleep apnea in a sample grouping of primary care physicians,” Sleep and Breathing, vol. 5, no. 3, pp. 115–121, 2001.
[37]
D. S. Silverberg, A. Oksenberg, and A. Iaina, “Sleep related breathing disorders are common contributing factors to the production of essential hypertension but are neglected, underdiagnosed, and undertreated,” American Journal of Hypertension, vol. 10, no. 12 I, pp. 1319–1325, 1997.
[38]
“The National Commission on Sleep Disorders Research,” 2011.
[39]
M. Friedman, D. Bliznikas, M. Klein, P. Duggal, M. Somenek, and N. J. Joseph, “Comparison of the incidences of obstructive sleep apnea-hypopnea syndrome in African-Americans versus Caucasian-Americans,” Otolaryngology, vol. 134, no. 4, pp. 545–550, 2006.
[40]
G. T. O'Connor, B. K. Lind, E. T. Lee et al., “Variation in symptoms of sleep-disordered breathing with race and ethnicity: the Sleep Heart Health Study,” Sleep, vol. 26, no. 1, pp. 74–79, 2003.
[41]
L. K. Williams, C. L. Joseph, E. L. Peterson et al., “Race-ethnicity, crime, and other factors associated with adherence to inhaled corticosteroids,” Journal of Allergy and Clinical Immunology, vol. 119, no. 1, pp. 168–175, 2007.
[42]
B. J. Turner, C. Hollenbeak, M. G. Weiner, T. Ten Have, and C. Roberts, “Barriers to adherence and hypertension control in a racially diverse representative sample of elderly primary care patients,” Pharmacoepidemiology and Drug Safety, vol. 18, no. 8, pp. 672–681, 2009.
[43]
C. D. Ndumele, S. Shaykevich, D. Williams, and L. S. Hicks, “Disparities in adherence to hypertensive care in urban ambulatory settings,” Journal of Health Care for the Poor and Underserved, vol. 21, no. 1, pp. 132–143, 2010.
[44]
A. G. Logan, R. Tkacova, S. M. Perlikowski et al., “Refractory hypertension and sleep apnoea: effect of CPAP on blood pressure and baroreflex,” European Respiratory Journal, vol. 21, no. 2, pp. 241–247, 2003.
[45]
M. A. Martínez-García, R. Gómez-Aldaraví, J. J. Soler-Catalu?a, T. G. Martínez, B. Bernácer-Alpera, and P. Román-Sánchez, “Positive effect of CPAP treatment on the control of difficult-to-treat hypertension,” European Respiratory Journal, vol. 29, no. 5, pp. 951–957, 2007.
[46]
T. A. Dernaika, G. T. Kinasewitz, and M. M. Tawk, “Effects of nocturnal continuous positive airway pressure therapy in patients with resistant hypertension and obstructive sleep apnea,” Journal of Clinical Sleep Medicine, vol. 5, no. 2, pp. 103–107, 2009.
[47]
L. Lozano, J. L. Tovar, G. Sampol et al., “Continuous positive airway pressure treatment in sleep apnea patients with resistant hypertension: a randomized, controlled trial,” Journal of Hypertension, vol. 28, no. 10, pp. 2161–2168, 2010.