全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Community-Based Participatory Research Approaches for Hypertension Control and Prevention in Churches

DOI: 10.4061/2011/273120

Full-Text   Cite this paper   Add to My Lib

Abstract:

Hypertension (HTN) is a highly prevalent risk factor for cardiovascular (CV), cerebrovascular, and renal diseases and disproportionately affects African Americans (AAs). It has been shown that promoting the adoption of healthy lifestyles, ones that involve best practices of diet and exercise and abundant expert support, can, in a healthcare setting, reduce the incidence of hypertension in those who are at high risk. In this paper, we will examine whether similar programs are effective in the AA church-community-based participatory research settings, outside of the healthcare arena. If successful, these church-based approaches may be applied successfully to reduce the incidence and consequences of hypertension in large communities with potentially huge impact on public health. 1. Introduction Hypertension (HTN) is one of the most common diseases facing the American public today with elevated blood pressure (BP) representing the number 1 attributable risk for death worldwide [1–3]. The National Health and Nutrition Examination Survey (NHANES) data indicate that the age-standardized prevalence of HTN increased from 24.4% to 28.9% ( ) between surveys conducted in 1989–1991 and 1999–2004 [4]. An aging population, growing rates of obesity, high-sodium diets, and a sedentary lifestyle all are thought to contribute to this increase [5]. Nationally, HTN is the largest treatable contributor to stroke and the second largest contributor to coronary artery disease (CAD). It is also the second leading cause of end-stage renal disease and contributes significantly to congestive heart failure [6]. HTN increases the risk of stroke, heart attack, heart failure, and kidney disease [1, 3], and though it is a modifiable risk factor for all the aforementioned diseases, however, no significant change in HTN prevalence is seen from 1999 to 2006 [7, 8]. In 2005-2006, approximately 29% of the US population over the age of 18 was hypertensive (almost equal prevalence between male and female), with the definition of HTN being systolic BP (SBP) ≥140?mm?Hg and/or diastolic BP (DBP) ≥90?mm?Hg, or taking medications for HTN [3, 7, 8]. The prevalence of HTN increased with age from 7% among those aged 18–39 years to 67% among those aged 60 years and older [7]. Furthermore, during this time period, pre-HTN, defined as SBP between 120–139?mm?Hg and DBP between 80–89?mm?Hg emerged as is an independent risk factor for cardiovascular disease (CVD) [9] and is associated with an increase in all-cause and CV mortality [10–14]. Currently an estimated 37% of adult Americans have pre-HTN,

References

[1]  World Health Organization, World Health Report 2002: Reducing Risks, Promoting Healthy Life, World Health Organization, Geneva, Switzerland, 2002.
[2]  M. Heron, “Deaths: leading causes for 2004,” National Vital Statistics Reports, vol. 56, no. 5, pp. 1–95, 2007.
[3]  Centers for Disease Control, Health, United States, 2007 with chart book on trends in the health of Americans, National Center for Health Statistics, Hyattsville, Md, USA, 2007.
[4]  I. Hajjar and T. A. Kotchen, “Trends in prevalence, awareness, treatment, and control of hypertension in the United States, 1988–2000,” Journal of the American Medical Association, vol. 290, no. 2, pp. 199–206, 2003.
[5]  J. A. Cutler, P. D. Sorlie, M. Wolz, T. Thom, L. E. Fields, and E. J. Roccella, “Trends in hypertension prevalence, awareness, treatment, and control rates in United States adults between 1988–1994 and 1999–2004,” Hypertension, vol. 52, no. 5, pp. 818–827, 2008.
[6]  D. M. Lloyd-Jones, R. Adams, M. Carnethon et al., “Heart disease and stroke statistics–2009 update: a report from the American heart association statistics committee and stroke statistics subcommittee,” Circulation, vol. 119, no. 3, pp. e21–e181, 2009.
[7]  Y. Ostchega, S. S. Yoon, J. Hughes, and T. Louis, “Hypertension awareness, treatment, and control—continued disparities in adults: United States, 2005-2006,” NCHS Data Brief, no. 3, pp. 1–8, 2008.
[8]  National Heart, Lung, and Blood Institute, “Seventh report of the joint national committee on prevention, detection, evaluation and treatment of high blood pressure,” May 2010, http://www.nhlbi.nih.gov/guidelines/hypertension/jnc7.
[9]  H. A. Liszka, A. G. Mainous III, D. E. King, C. J. Everett, and B. M. Egan, “Prehypertension and cardiovascular morbidity,” Annals of Family Medicine, vol. 3, no. 4, pp. 294–299, 2005.
[10]  A. I. Qureshi, M. F. K. Suri, J. F. Kirmani, A. A. Divani, and Y. Mohammad, “Is prehypertension a risk factor for cardiovascular diseases?” Stroke, vol. 36, no. 9, pp. 1859–1863, 2005.
[11]  A. G. Mainous III, C. J. Everett, H. Liszka, D. E. King, and B. M. Egan, “Prehypertension and mortality in a nationally representative cohort,” American Journal of Cardiology, vol. 94, no. 12, pp. 1496–1500, 2004.
[12]  A. V. Kshirsagar, M. Carpenter, H. Bang, S. B. Wyatt, and R. E. Colindres, “Blood pressure usually considered normal is associated with an elevated risk of cardiovascular disease,” American Journal of Medicine, vol. 119, no. 2, pp. 133–141, 2006.
[13]  Y. Zhang, E. T. Lee, R. B. Devereux et al., “Prehypertension, diabetes, and cardiovascular disease risk in a population-based sample: the strong heart study,” Hypertension, vol. 47, no. 3, pp. 410–414, 2006.
[14]  W. Rosamond, K. Flegal, K. Furie et al., “Heart disease and stroke statistics-2008 update: a report from the American heart association statistics committee and stroke statistics subcommittee,” Circulation, vol. 117, no. 4, pp. e25–e46, 2008.
[15]  A. I. Qureshi, M. F. Suri, J. F. Kirmani, and A. A. Divani, “Prevalence and trends of prehypertension and hypertension in United States: national health and nutrition examination surveys 1976 to 2000,” Medical Science Monitor, vol. 11, no. 9, pp. CR403–CR409, 2005.
[16]  K. J. Greenlund, J. B. Croft, and G. A. Mensah, “Prevalence of heart disease and stroke risk factors in persons with prehypertension in the United States, 1999–2000,” Archives of Internal Medicine, vol. 164, no. 19, pp. 2113–2118, 2004.
[17]  O. H. Franco, A. Peeters, L. Bonneux, and C. de Laet, “Blood pressure in adulthood and life expectancy with cardiovascular disease in men and women: life course analysis,” Hypertension, vol. 46, no. 2, pp. 280–286, 2005.
[18]  R. S. Vasan, M. G. Larson, E. P. Leip et al., “Impact of high-normal blood pressure on the risk of cardiovascular disease,” The New England Journal of Medicine, vol. 345, no. 18, pp. 1291–1297, 2001.
[19]  L. B. Russell, E. Valiyeva, and J. L. Carson, “Effects of prehypertension on admissions and deaths: a simulation,” Archives of Internal Medicine, vol. 164, no. 19, pp. 2119–2124, 2004.
[20]  T. M. Vogt, L. J. Appel, E. Obarzanek et al., “Dietary approaches to stop hypertension: rationale, design, and methods,” Journal of the American Dietetic Association, vol. 99, supplement 8, pp. S12–S18, 1999.
[21]  L. J. Appel, T. J. Moore, E. Obarzanek, et al., “A clinical trial of the effects of dietary patterns on blood pressure. DASH collaborative research Ggroup,” The New England Journal of Medicine, vol. 336, no. 16, pp. 1117–1124, 1997.
[22]  F. M. Sacks, L. P. Svetkey, W. M. Vollmer, et al., “Effects on blood pressure of reduced dietary sodium and the dietary approaches to stop hypertension (DASH) diet. DASH-sodium collaborative research group,” The New England Journal of Medicine, vol. 344, no. 1, pp. 3–10, 2001.
[23]  E. Obarzanek, F. M. Sacks, W. M. Vollmer, et al., “Effects on blood lipids of a blood pressure-lowering diet: the dietary approaches to stop hypertension (DASH) trial,” The American Journal of Clinical Nutrition, vol. 74, no. 1, pp. 80–89, 2001.
[24]  U.S. Department of Health and Human Services, United States Department of Health and Human Services, National Institutes of Health, National Heart Lung, and Blood Institute. Your Guide to Lowering Your Blood Pressure With DASH, May 2009, http://www.nhlbi.nih.gov/health/public/heart/hbp/dash.
[25]  T. T. Fung, S. E. Chiuve, M. L. McCullough, K. M. Rexrode, G. Logroscino, and F. B. Hu, “Adherence to a DASH-style diet and risk of coronary heart disease and stroke in women,” Archives of Internal Medicine, vol. 168, no. 7, pp. 713–720, 2008.
[26]  F. B. Hu, M. J. Stampfer, E. Rimm et al., “Dietary fat and coronary heart disease: a comparison of approaches for adjusting for total energy intake and modeling repeated dietary measurements,” American Journal of Epidemiology, vol. 149, no. 6, pp. 531–540, 1999.
[27]  E. B. Levitan, A. Wolk, and M. A. Mittleman, “Consistency with the DASH diet and incidence of heart failure,” Archives of Internal Medicine, vol. 169, no. 9, pp. 851–857, 2009.
[28]  N. Karanja, K. J. Lancaster, W. M. Vollmer et al., “Acceptability of sodium-reduced research diets, including the dietary approaches to stop hypertension diet, among adults with prehypertension and stage 1 hypertension,” Journal of the American Dietetic Association, vol. 107, no. 9, pp. 1530–1538, 2007.
[29]  W. M. Vollmer, F. M. Sacks, J. Ard, et al., “Effects of diet and sodium intake on blood pressure: subgroup analysis of the DASH-sodium trial,” Annals of Internal Medicine, vol. 135, no. 12, pp. 1019–1028, 2001.
[30]  G. A. Bray, W. M. Vollmer, F. M. Sacks, et al., “A further subgroup analysis of the effects of the DASH diet and three dietary sodium levels on blood pressure: results of the DASH-sodium trial,” American Journal of Cardiology, vol. 94, no. 2, pp. 222–227, 2004.
[31]  A. V. Chobanian, M. Hill, and E. J. Roccella, “National heart, lung, and blood institute workshop on sodium and blood pressure: a critical review of current scientific evidence,” Hypertension, vol. 35, no. 4, pp. 858–863, 2000.
[32]  US Department of Health and Human Services, US Department of Agriculture, Dietary Guidelines for Americans 2005, US Government Printing Office, Washington, DC, USA, 2005.
[33]  K. L. Funk, P. J. Elmer, V. J. Stevens, et al., “PREMIER—a trial of lifestyle interventions for blood pressure control: intervention design and rationale,” Health Promotion Practice, vol. 9, no. 3, pp. 271–280, 2008.
[34]  E. Obarzanek, W. M. Vollmer, P. H. Lin et al., “Effects of individual components of multiple behavior changes: the PREMIER trial,” American Journal of Health Behavior, vol. 31, no. 5, pp. 545–560, 2007.
[35]  P. J. Elmer, E. Obarzanek, W. M. Vollmer, et al., “Effects of comprehensive lifestyle modification on diet, weight, physical fitness, and blood pressure control: 18-month results of a randomized trial,” Annals of Internal Medicine, vol. 144, no. 7, pp. 485–495, 2006.
[36]  L. J. Appel, C. M. Champagne, D. W. Harsha, et al., “Effects of comprehensive lifestyle modification on blood pressure control: main results of the PREMIER clinical trial,” The Journal of the American Medical Association, vol. 289, no. 16, pp. 2083–2093, 2003.
[37]  L. Chen, L. J. Appel, C. Loria et al., “Reduction in consumption of sugar-sweetened beverages is associated with weight loss: the PREMIER trial,” American Journal of Clinical Nutrition, vol. 89, no. 5, pp. 1299–1306, 2009.
[38]  Y. F. Wang, W. S. Yancy Jr., D. Yu, et al., “The relationship between dietary protein intake and blood pressure: results from the PREMIER study,” Journal of Human Hypertension, vol. 22, no. 11, pp. 745–754, 2008.
[39]  J. H. Ledikwe, B. J. Rolls, H. Smiciklas-Wright et al., “Reductions in dietary energy density are associated with weight loss in overweight and obese participants in the PREMIER trial,” American Journal of Clinical Nutrition, vol. 85, no. 5, pp. 1212–1221, 2007.
[40]  E. B. Kahn, L. T. Ramsey, R. C. Brownson et al., “The effectiveness of interventions to increase physical activity: a systematic review,” American Journal of Preventive Medicine, vol. 22, supplement 4, pp. 73–107, 2002.
[41]  M. K. Campbell, K. Resnicow, C. Carr, et al., “Process evaluation of an effective church-based diet intervention: body & Soul,” Health Education & Behavior, vol. 34, no. 6, pp. 864–880, 2007.
[42]  M. K. Campbell, M. A. Hudson, K. Resnicow, N. Blakeney, A. Paxton, and M. Baskin, “Church-based health promotion interventions: evidence and lessons learned,” Annual Review of Public Health, vol. 28, pp. 213–234, 2007.
[43]  M. Viswanathan, A. Ammerman, E. Eng et al., “Community-based participatory research: assessing the evidence,” Evidence Report/Technology Assessment (Summary), no. 99, pp. 1–8, 2004.
[44]  J. Rankins, W. Sampson, B. Brown, and T. Jenkins-Salley, “Dietary approaches to stop hypertension (DASH) intervention reduces blood pressure among hypertensive African American patients in a neighborhood health care center,” Journal of Nutrition Education and Behavior, vol. 37, no. 5, pp. 259–264, 2005.
[45]  R. G. Victor, J. E. Ravenell, A. Freeman et al., “A barber-based intervention for hypertension in African American men: design of a group randomized trial,” American Heart Journal, vol. 157, no. 1, pp. 30–36, 2009.
[46]  D. E. Jones, M. T. Weaver, and E. Friedmann, “Promoting heart health in women: a workplace intervention to improve knowledge and perceptions of susceptibility to heart disease,” AAOHN Journal, vol. 55, no. 7, pp. 271–276, 2007.
[47]  M. J. DeHaven, I. B. Hunter, L. Wilder, J. W. Walton, and J. Berry, “Health programs in faith-based organizations: are they effective?” American Journal of Public Health, vol. 94, no. 6, pp. 1030–1036, 2004.
[48]  J. Kark, G. Shemi, Y. Friedlander, et al., “Does religious observance promote health? mortality in secular versus religious kibbutzim in Israel,” American Journal of Public Health, vol. 86, no. 3, pp. 341–346, 2006.
[49]  D. Oman and D. Reed, “Religion and mortality among the community-dwelling elderly,” American Journal of Public Health, vol. 88, no. 10, pp. 1469–1475, 1998.
[50]  E. Eng, J. Hatch, and A. Callan, “Institutionalizing social support through the church and into the community,” Health Education Quarterly, vol. 12, no. 1, pp. 81–92, 1985.
[51]  T. M. Lasater, D. M. Becker, M. N. Hill, and K. M. Gans, “Synthesis of findings and issues from religious-based cardiovascular disease prevention trials,” Annals of Epidemiology, no. 7, supplement, pp. S46–S53, 1997.
[52]  S. Thumma, “Mega-churches today 2000: summary of data from the faith communities today 2000 project,” 2001, http://hirr.hartsem.edu/org/faith_megachurches_FACTsummary.html.
[53]  TOHP1.The Trials of Hypertension Prevention Collaborative Research Group, “The effects of non-pharmacologic interventions on blood pressure of persons with high-normal levels: results of the trials of hypertension prevention, phase I,” Journal of the American Medical Association, vol. 267, no. 9, pp. 1213–1220, 1992.
[54]  TOHP2.The Trials of Hypertension Prevention Collaborative Research Group, “Effects of weight loss and sodium reduction intervention on blood pressure and hypertension incidence in overweight people with high-normal blood pressure: the trials of hypertension prevention, phase II,” Archives of Internal Medicine, vol. 157, no. 6, pp. 657–667, 1997.
[55]  W. Demark-Wahnefried, J. W. McClelland, B. Jackson et al., “Partnering with African American churches to achieve better health: lessons learned during the black churches united for better health 5 a day project,” Journal of Cancer Education, vol. 15, no. 3, pp. 164–167, 2000.
[56]  N. Karanja, V. J. Stevens, J. F. Hollis, and S. K. Kumanyaki, “Stems to soulful living (steps): a weight loss program for African-American women,” Ethnicity & Disease, vol. 12, no. 3, pp. 363–371, 2002.
[57]  R. S. Cooper, J. F. Kennelly, R. Durazo-Arvizu, H. J. Oh, G. Kaplan, and J. Lynch, “Relationship between premature mortality and socioeconomic factors in black and white populations of US metropolitan areas,” Public Health Reports, vol. 116, no. 5, pp. 464–473, 2001.
[58]  M. Minkler and N. Wallerstein, Community-Based Participatory Research in Health, Jossey-Bass, San Francisco, Calif, USA, 2003.
[59]  S. Dodani and J. Z. Fields, “Implementation of the fit body and soul, a church-based life style program for diabetes prevention in high-risk African Americans: a feasibility study,” Diabetes Educator, vol. 36, no. 3, pp. 465–472, 2010.
[60]  S. Dodani, K. Kramer, L. Williams, et al., “A church-based behavioral lifestyle program for diabetes prevention in African Americans: Translation into the religious community,” Ethnicity & Diseases, vol. 19, no. 2, pp. 135–141, 2009.
[61]  S. Dodani, C. Champagne, and S. Pankey, “A Faith- based hypertension control and prevention program for African American churches. training of church leaders for effective program delivery,” International J of Hypertension. In press.
[62]  A. C. Macaulay, L. E. Commanda, W. L. Freeman et al., “Participatory research maximises community and lay involvement,” British Medical Journal, vol. 319, no. 7212, pp. 774–778, 1999.
[63]  D. Simmons, J. Voyle, B. Swinburn, and K. O'Dea, “Community-based approaches for the primary prevention of non-insulin- dependent diabetes mellitus,” Diabetic Medicine, vol. 14, no. 7, pp. 519–526, 1997.
[64]  L. R. Yanek, D. M. Becker, T. F. Moy, J. Gittelsohn, and D. M. Koffman, “Project Joy: faith based cardiovascular health promotion for African American women,” Public Health Reports, vol. 116, supplement 1, pp. 68–81, 2001.
[65]  S. K. Kumanyika and J. B. Charleston, “Lose weight and win: a church-based weight loss program for blood pressure control among black women,” Patient Education and Counseling, vol. 19, no. 1, pp. 19–32, 1992.
[66]  J. C. Gerber and D. L. Stewart, “Prevention and control of hypertension and diabetes in an underserved population through community outreach and disease management: a plan of action,” Journal of the Association for Academic Minority Physicians, vol. 9, no. 3, pp. 48–52, 1998.
[67]  E. D. Smith, S. L. Merritt, and M. K. Patel, “Church-based education: an outreach program for African Americans with hypertension,” Ethnicity & Health, vol. 2, no. 3, pp. 243–253, 1997.
[68]  M. J. Oexmann, R. Ascanio, and B. M. Egan, “Efficacy of a church-based intervention on cardiovascular risk reduction,” Ethnicity & Disease, vol. 11, no. 4, pp. 817–822, 2001.
[69]  M. J. Oexmann, J. C. Thomas, K. B. Taylor et al., “Short-term impact of a church-based approach to lifestyle change on cardiovascular risk in African Americans,” Ethnicity & Disease, vol. 10, no. 1, pp. 17–23, 2000.
[70]  W. H. Wiist and J. M. Flack, “A church-based cholesterol education program,” Public Health Reports, vol. 105, no. 4, pp. 381–388, 1990.
[71]  J. M. Flack and W. H. Wiist, “Cardiovascular risk factor prevalence in African-American adult screenees for a church-based cholesterol education program: the northeast oklahoma city cholesterol education program,” Ethnicity & Disease, vol. 1, no. 1, pp. 78–90, 1991.
[72]  M. L. Baskin, K. Resnicow, and M. K. Campbell, “Conducting health interventions in black churches: a model for building effective partnerships,” Ethnicity & Disease, vol. 11, no. 4, pp. 823–833, 2001.
[73]  E. Eng and J. W. Hatch, “Networking between agencies and black churches: the lay health advisor model,” Journal of Prevention in Human Services, vol. 10, no. 1, pp. 123–146, 1991.
[74]  L. J. Appel, “Lifestyle modification as a means to prevent and treat high blood pressure,” Journal of the American Society of Nephrology, vol. 14, no. 2, supplement 2, pp. S99–S102, 2003.
[75]  J. Rankins, J. Wortham, and L. L. Brown, “Modifying soul food for the dietary approaches to stop hypertension diet (DASH) plan: implications for metabolic syndrome (DASH of Soul),” Ethnicity & Disease, vol. 17, no. 3, supplement 4, pp. S4–7, 2007.
[76]  T. J. Moore, N. Alsabeeh, C. M. Apovian et al., “Weight, blood pressure, and dietary benefits after 12 months of a web-based nutrition education program (DASH for health): longitudinal observational study,” Journal of Medical Internet Research, vol. 10, no. 4, article e52, 2008.
[77]  N. M. Karanja, E. Obarzanek, P. H. Lin et al., “Descriptive characteristics of the dietary patterns used in the dietary approaches to stop hypertension trial,” Journal of the American Dietetic Association, vol. 99, no. 8, supplement, pp. S19–S27, 1999.
[78]  M. N. Fongwa, L. S. Evangelista, and L. V. Doering, “Adherence to treatment factors in hypertensive African American women,” Journal of Cardiovascular Nursing, vol. 21, no. 3, pp. 201–207, 2006.
[79]  Joint National Committee on Detection, Evaluation, and Treatment of High Blood Pressure, “The fifth report of the Joint National Committee on the Detection,Evaluation, and Treatment of High Blood Pressure(JNC V),” Archives of Internal Medicine, vol. 153, no. 2, pp. 154–183, 1993.
[80]  Joint National Committee on Detection, Evaluation, and Treatment of High Blood Pressure, “The sixth report of the Joint National Committeeon the Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC VI),” Archives of Internal Medicine, vol. 157, pp. 2413–2446, 1997.
[81]  J. A. Cutler, D. Follmann, and P. Scott Allender, “Randomized trials of sodium reduction: an overview,” The American Journal of Clinical Nutrition, vol. 65, supplement 2, pp. 643S–651S, 1997.
[82]  M. R. Law, C. D. Frost, and N. J. Wald, “By how much does dietary salt reduction lower blood pressure? III—analysis of data from trials of salt reduction,” British Medical Journal, vol. 302, no. 6780, pp. 819–824, 1991.
[83]  M. A. Beydoun and Y. Wang, “How do socio-economic status, perceived economic barriers and nutritional benefits affect quality of dietary intake among US adults?” European Journal of Clinical Nutrition, vol. 62, no. 3, pp. 303–313, 2008.
[84]  J. N. Bodor, D. Rose, T. A. Farley, et al., “Neighbourhood fruit and vegetable availability and consumption: the role of small food stores in an urban environment,” Public Health Nutrition, vol. 11, no. 4, pp. 413–420, 2008.
[85]  D. Cassady, K. M. Jetter, and J. Culp, “Is price a barrier to eating more fruits and vegetables for low-income families?” Journal of the American Dietetic Association, vol. 107, no. 11, pp. 1909–1915, 2007.
[86]  A. S. Hosler, D. T. Rajulu, B. L. Fredrick, and A. E. Ronsani, “Assessing retail fruit and vegetable availability in urban and rural underserved communities,” Preventing Chronic Disease, vol. 5, no. 4, article A123, 2008.
[87]  K. M. Jetter and D. L. Cassady, “Increasing fresh fruit and vegetable availability in a low-income neighborhood convenience store: a pilot study,” Health Promotion Practice, vol. 11, no. 5, pp. 694–702, 2010.
[88]  V. V. Bavikati, L. S. Sperling, R. D. Salmon et al., “Effect of comprehensive therapeutic lifestyle changes on prehypertension,” American Journal of Cardiology, vol. 102, no. 12, pp. 1677–1680, 2008.
[89]  J. D. Ard, L. Carter-Edwards, and L. P. Svetkey, “A new model for developing and executing culturally appropriate behavior modification clinical trials for African Americans,” Ethnicity & Disease, vol. 13, no. 2, pp. 279–285, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133