全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Hypertension, Periodontal Disease, and Potassium Intake in Nonsmoking, Nondrinker African Women on No Medication

DOI: 10.4061/2011/695719

Full-Text   Cite this paper   Add to My Lib

Abstract:

The purpose of this cross-sectional study was to investigate the association of periodontitis and/or tooth loss with hypertension by excluding the common confounders. Eighty-one Tanzanian women who were aged 46–58 years, nonsmokers, nonalcoholic drinkers, and on no medication underwent clinical examination. Multiple-regression analysis showed that the severity of periodontitis was significantly correlated with increased systolic blood pressure and diastolic blood pressure. Simple-regression analysis indicated that the severity of periodontitis was inversely correlated with 24-hour urinary excretion of potassium ( , ) and also inversely with the frequency of intakes of green vegetables ( , ) and fruits ( , ). Low-potassium intake in the diet mostly accompanied by low dietary fiber intake increases BP as well as periodontal inflammation. Potassium intake may be an important factor linking periodontitis and hypertension in middle-aged nonsmoking and nonalcoholic women on no medication, although chronic inflammation such as periodontitis may cause hypertension through a more direct mechanism. 1. Introduction Periodontitis, which affects a large number of adults globally, is epidemiologically related to atherosclerotic vascular diseases and metabolic syndrome [1, 2]. Periodontitis as chronic inflammation destroys the supporting structure of the teeth and increases the level of C-reactive protein (CRP) [3–5]. Recent attention has focused on elevated serum CRP, a marker of systemic inflammation, as a strong and independent risk factor or predictor of hypertension (HT) [6]. The systemic response to periodontal infection is a possible pathway underlying the observed association between periodontitis and increased risk for HT. Epidemiological systematic examinations about the noted relationship between periodontitis and vascular diseases should be conducted among healthy subjects who have never smoked [7] because smoking is regarded as a strong confounder and may spuriously inflate the association between periodontitis and vascular diseases. Alcohol consumption is also one of the risk factors that can lead to the development of not only HT [8] but also periodontitis [9]. In nonsmoking menopausal Japanese women, tooth loss but not periodontitis was proven to be significantly associated with an increased risk of HT [10]. Medical care is also a confounding variable that strongly affects epidemiological studies in developed countries such as Japan, where epidemiological analysis on the association between vascular diseases and oral health may be complicated by the

References

[1]  F. DeStefano, R. F. Anda, H. S. Kahn, D. F. Williamson, and C. M. Russell, “Dental disease and risk of coronary heart disease and mortality,” British Medical Journal, vol. 306, no. 6879, pp. 688–691, 1993.
[2]  Y. Shimazaki, T. Saito, K. Yonemoto, Y. Kiyohara, M. Iida, and Y. Yamashita, “Relationship of metabolic syndrome to periodontal disease in Japanese women: the Hisayama study,” Journal of Dental Research, vol. 86, no. 3, pp. 271–275, 2007.
[3]  G. Seinost, G. Wimmer, M. Skerget et al., “Periodontal treatment improves endothelial dysfunction in patients with severe periodontitis,” American Heart Journal, vol. 149, no. 6, pp. 1050–1054, 2005.
[4]  K. J. Joshipura, H. C. Wand, A. T. Merchant, and E. B. Rimm, “Periodontal disease and biomarkers related to cardiovascular disease,” Journal of Dental Research, vol. 83, no. 2, pp. 151–155, 2004.
[5]  F. D'Aiuto, M. Parkar, G. Andreou et al., “Periodontitis and systemic inflammation: control of the local infection is associated with a reduction in serum inflammatory markers,” Journal of Dental Research, vol. 83, no. 2, pp. 156–160, 2004.
[6]  H. D. Sesso, J. E. Buring, N. Rifai, G. J. Blake, J. M. Gaziano, and P. M. Ridker, “C-reactive protein and the risk of developing hypertension,” Journal of the American Medical Association, vol. 290, no. 22, pp. 2945–2951, 2003.
[7]  P. P. Hujoel, “Does chronic periodontitis cause coronary heart disease? A review of the literature,” The Journal of the American Dental Association, vol. 133, supplement 1, pp. 31S–36S, 2002.
[8]  A. Ascherio, C. Hennekens, W. C. Willett et al., “Prospective study of nutritional factors, blood pressure, and hypertension among US women,” Hypertension, vol. 27, no. 5, pp. 1065–1072, 1996.
[9]  W. Pitiphat, A. T. Merchant, E. B. Rimm, and K. J. Joshipura, “Alcohol consumption increases periodontitis risk,” Journal of Dental Research, vol. 82, no. 7, pp. 509–513, 2003.
[10]  A. Taguchi, M. Sanada, Y. Suei et al., “Tooth loss is associated with an increased risk of hypertension in postmenopausal women,” Hypertension, vol. 43, no. 6, pp. 1297–1300, 2004.
[11]  M. Harel-Raviv, M. Eckler, K. Lalani, E. Raviv, and M. Gornitsky, “Nifedipine-induced gingival hyperplasia. A comprehensive review and analysis,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology, vol. 79, no. 6, pp. 715–722, 1995.
[12]  “Excerpts from the WHO CARDIAC Study Protocol,” Journal of Cardiovascular Pharmacology, vol. 16, supplement 8, pp. 75–77, 1990.
[13]  Y. Yamori, L. Liu, K. Ikeda et al., “Distribution of twenty-four hour urinary taurine excretion and association with ischemic heart disease mortality in 24 populations of 16 countries: results from the WHO-CARDIAC Study,” Hypertension Research, vol. 24, no. 4, pp. 453–457, 2001.
[14]  M. Njelekela, H. Negishi, Y. Nara et al., “Cardiovascular risk factors in Tanzania: a revisit,” Acta Tropica, vol. 79, no. 3, pp. 231–239, 2001.
[15]  M. Njelekela, K. Ikeda, J. Mtabaji, and Y. Yamori, “Dietary habits, plasma polyunsaturated fatty acids and selected coronary disease risk factors in Tanzania,” East African Medical Journal, vol. 82, no. 11, pp. 572–578, 2005.
[16]  J. P. Mtabaji, Y. Nara, and Y. Yamori, “The cardiac study in Tanzania: salt intake in the causation and treatment of hypertension,” Journal of Human Hypertension, vol. 4, no. 2, pp. 80–81, 1990.
[17]  J. P. Mtabaji, Y. Nara, Y. Moriguchi, and Y. Yamori, “Diet and hypertension in Tanzania,” Journal of Cardiovascular Pharmacology, vol. 16, supplement 8, pp. S3–S5, 1990.
[18]  M. Njelekela, T. Sato, Y. Nara et al., “Nutritional variation and cardiovascular risk factors in Tanzania—rural-urban difference,” South African Medical Journal, vol. 93, no. 4, pp. 295–299, 2003.
[19]  F. Angeli, P. Verdecchia, C. Pellegrino et al., “Association between periodontal disease and left ventricle mass in essential hypertension,” Hypertension, vol. 41, no. 3, pp. 488–492, 2003.
[20]  S. J. Janket, M. Qvarnstr?m, J. H. Meurman, A. E. Baird, P. Nuutinen, and J. A. Jones, “Asymptotic dental score and prevalent coronary heart disease,” Circulation, vol. 109, no. 9, pp. 1095–1100, 2004.
[21]  T. Schillinger, W. Kluger, M. Exner et al., “Dental and periodontal status and risk for progression of carotid atherosclerosis: the inflammation and carotid artery risk for atherosclerosis study dental substudy,” Stroke, vol. 37, no. 9, pp. 2271–2276, 2006.
[22]  J. Tamaki, K. Yoshita, Y. Kikuchi et al., “Applicability of the stages of change model for analyzing fruit and vegetable intake in relation to urinary potassium excretion: baseline results from the High-Risk and Population Strategy for Occupational Health Promotion (HIPOP-OHP) study,” Hypertension Research, vol. 27, no. 11, pp. 843–850, 2004.
[23]  L. Forner, T. Larsen, M. Kilian, and P. Holmstrup, “Incidence of bacteremia after chewing, tooth brushing and scaling in individuals with periodontal inflammation,” Journal of Clinical Periodontology, vol. 33, no. 6, pp. 401–407, 2006.
[24]  V. I. Haraszthy, J. J. Zambon, M. Trevisan, M. Zeid, and R. J. Genco, “Identification of periodontal pathogens in atheromatous plaques,” Journal of Periodontology, vol. 71, no. 10, pp. 1554–1560, 2000.
[25]  M. S. Tonetti, F. D'Aiuto, L. Nibali et al., “Treatment of periodontitis and endothelial function,” New England Journal of Medicine, vol. 356, no. 9, pp. 911–920, 2007.
[26]  F. Selzer, K. Sutton-Tyrrell, S. Fitzgerald, R. Tracy, L. Kuller, and S. Manzi, “Vascular stiffness in women with systemic lupus erythematosus,” Hypertension, vol. 37, no. 4, pp. 1075–1082, 2001.
[27]  M. J. Roman, R. B. Devereux, J. E. Schwartz et al., “Arterial stiffness in chronic inflammatory diseases,” Hypertension, vol. 46, no. 1, pp. 194–199, 2005.
[28]  M. S. Al-Zahrani, “Increased intake of dairy products is related to lower periodontitis prevalence,” Journal of Periodontology, vol. 77, no. 2, pp. 289–294, 2006.
[29]  R. D. McCabe, M. A. Bakarich, K. Srivastava, and D. B. Young, “Potassium inhibits free radical formation,” Hypertension, vol. 24, no. 1, pp. 77–82, 1994.
[30]  M. Kido, K. Ando, M. L. Onozato et al., “Protective effect of dietary potassium against vascular injury in salt-sensitive hypertension,” Hypertension, vol. 51, no. 2, pp. 225–231, 2008.
[31]  H. Negishi, K. Ikeda, S. Kuga et al., “The relation of oxidative DNA damage to hypertension and other cardiovascular risk factors in Tanzania,” Journal of Hypertension, vol. 19, no. 3, pp. 529–533, 2001.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133