全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Changes in the Perceived Epidemiology of Primary Hyperaldosteronism

DOI: 10.4061/2011/162804

Full-Text   Cite this paper   Add to My Lib

Abstract:

Primary aldosteronism has been considered a rare disease in the past years, affecting 1% of the hypertensive population. Subsequently, growing evidence of its higher prevalence is present in literature, although the estimates of disease range from 5 up to 20%, as in type 2 diabetes and resistant hypertension. The main reasons for these variations are associated with the selection of patients and diagnostic procedures. If we consider that hypertension is present in about 20% of the adult population, primary aldosteronism can no longer be considered a rare disease. Patients with primary aldosteronism have a high incidence of cardiovascular, cerebrovascular and kidney complications. The identification of these patients has therefore a practical value on therapy, and to control morbidities derived from vascular damage. The ability to identify the prevalence of a disease depends on the number of subjects studied and the methods of investigation. Epidemiological studies are affected by these two problems: there is not consensus on patients who need to be investigated, although testing is recommended in subjects with resistant hypertension and diabetes. The question of how to determine aldosterone and renin levels is open, particularly if pharmacological wash-out is difficult to perform because of inadequate blood pressure control. 1. Introduction The history of primary aldosteronism (PA) is that of an uncommon cause of hypertension until up to 15 years ago. In 1954, Conn studied a 34-year-old female with high blood pressure, severe hypokalemia, and mild hypernatremia, discovering an averaged 22-fold higher mineralcorticoid activity per day in comparison with normotensive controls: this clinical condition reversed after the removal of a right adrenal mass. Thereafter, Conn stated in his presidential address “It is believed that these studies delineate a new clinical syndrome which is designated as primary aldosteronism.” Primary aldosteronism, as defined by Conn in 1955 [1], was widely thought to be present in approximately 1% of hypertensive patients [2, 3]. Today primary aldosteronism can be defined as a group of different disorders (Table 1), “in which aldosterone production is inappropriately high, relatively autonomous from the renin-angiotensin system, and non suppressible by sodium loading” [4]. Several studies suggest that PA is the most common cause of secondary hypertension, although the prevalence is variable from 5 to 20%, depending on patient selection and methods of diagnosis. There are changes in the perceived epidemiology of the disease because

References

[1]  J. W. Conn, “Presidential address. Part I. Painting background Part II. Primary aldosteronism, a new clinical syndrome,” The Journal of Laboratory and Clinical Medicine, vol. 45, no. 1, pp. 3–17, 1955.
[2]  L. M. Fishman, O. Küchel, G. W. Liddle, A. M. Michelakis, R. D. Gordon, and W. T. Chick, “Incidence of primary aldosteronism uncomplicated "essential" hypertension. A prospective study with elevated aldosterone secretion and suppressed plasma renin activity used as diagnostic criteria,” Journal of the American Medical Association, vol. 205, no. 7, pp. 497–502, 1968.
[3]  N. M. Kaplan, “Commentary on incidence of primary aldosteronism: current estimations based on objective data,” Archives of Internal Medicine, vol. 123, no. 2, pp. 152–154, 1969.
[4]  J. W. Funder, R. M. Carey, C. Fardella, et al., “Case detection, dsiagnosis, and treatment of patients with primary aldosteronism: an Endocrine Society Clinical Practice Guideline,” The Journal of Clinical Endocrinology & Metabolism, vol. 93, pp. 3266–3288, 2008.
[5]  R. D. Gordon, “Primary aldosteronism—actual epidemics or false alarm?” Arquivos Brasileiros de Endocrinologia e Metabologia, vol. 48, no. 5, pp. 666–673, 2004.
[6]  A. Moraitis and C. Stratakis, “Adrenocortical causes of hypertension,” International Journal of Hypertension, vol. 2011, Article ID 624691, 2011.
[7]  D. A. Calhoun, “Aldosteronism and hypertension,” Clinical journal of the American Society of Nephrology, vol. 1, no. 5, pp. 1039–1045, 2006.
[8]  M. H. Weinberger, B. Roniker, S. L. Krause, and R. J. Weiss, “Eplerenone, a Selective Aldosterone Blocker, in mild-to-moderate hypertension,” American Journal of Hypertension, vol. 15, no. 8, pp. 709–716, 2002.
[9]  H. Krum, H. Nolly, D. Workman et al., “Efficacy of eplerenone added to renin-angiotensin blockade in hypertensive patients,” Hypertension, vol. 40, no. 2, pp. 117–123, 2002.
[10]  L. M. Prisant, H. Krum, B. Roniker, S. L. Krause, K. Fakouhi, and W. He, “Can renin status predict the antihypertensive efficacy of eplerenone add-On therapy?” Journal of Clinical Pharmacology, vol. 43, no. 11, pp. 1203–1210, 2003.
[11]  M. R. Weir and M. Rolfe, “Potassium homeostasis and renin-angiotensin-aldosterone system inhibitors,” Clinical Journal of the American Society of Nephrology, vol. 5, no. 3, pp. 531–548, 2010.
[12]  I. K. Eide, P. A. Torjesen, A. Drolsum, A. Babovic, and N. P. Lilledahl, “Low-renin status in therapy-resistant hypertension: a clue to efficient treatment,” Journal of Hypertension, vol. 22, no. 11, pp. 2217–2226, 2004.
[13]  R. S. Vasan, J. C. Evans, M. G. Larson et al., “Serum aldosterone and the incidence of hypertension in nonhypertensive persons,” The New England Journal of Medicine, vol. 351, no. 1, pp. 33–111, 2004.
[14]  C. Newton-Cheh, C. Y. Guo, P. Gona et al., “Clinical and genetic correlates of aldosterone-to-renin ratio and relations to blood pressure in a community sample,” Hypertension, vol. 49, no. 4, pp. 846–856, 2007.
[15]  Y. Furumatsu, Y. Nagasawa, K. Tomida et al., “Effect of renin-angiotensin-aldosterone system triple blockade on non-diabetic renal disease: addition of an aldosterone blocker, spironolactone, to combination treatment with an angiotensin-converting enzyme inhibitor and angiotensin II receptor blocker,” Hypertension Research, vol. 31, no. 1, pp. 59–67, 2008.
[16]  A. Nishiyama, L. Yao, Y. Fan et al., “Involvement of aldosterone and mineralocorticoid receptors in rat mesangial cell proliferation and deformability,” Hypertension, vol. 45, no. 4, pp. 710–716, 2005.
[17]  J. W. Conn, “The evolution of primary aldosteronism: 1954–1967,” Harvey Lectures, vol. 62, pp. 257–291, 1966.
[18]  R. D Gordon, M. D. Ziesak, T. J. Tunyy, et al., “Evidence that primary aldosteronism may not be uncommon: 12% incidence among hypertensive drug trial volunteers,” Clinical and Experimental Pharmacology and Physiology, vol. 20, pp. 296–298, 1993.
[19]  R. D Gordon, M. D. Stowasser, T. J. Tunyy, et al., “High prevalence in primary aldosteronism in 199 patients referred with hypertension,” Clinical and Experimental Pharmacology and Physiology, vol. 21, pp. 315–318, 1994.
[20]  C. E. Fardella, L. Mosso, C. Gomez-Sanchez, et al., “Primary aldosteronism in essential hypertensives: prevalence, biochemical profile, and molecular biology,” The Journal of Clinical Endocrinology & Metabolism, vol. 85, pp. 1863–1867, 2000.
[21]  O. Olivieri, A. Ciacciarelli, D. Signorelli, et al., “Aldosterone to Renin Ratio in a primary care setting: the Bussolengo Study,” The Journal of Clinical Endocrinology & Metabolism, vol. 89, pp. 4421–4426, 2004.
[22]  G. P. Rossi, G. Bernini, C. Caliumi et al., “A prospective study of the prevalence of primary aldosteronism in 1,125 hypertensive patients,” Journal of the American College of Cardiology, vol. 48, no. 11, pp. 2293–2300, 2006.
[23]  J. S. Williams, G. H. Williams, A. Raji et al., “Prevalence of primary hyperaldosteronism in mild to moderate hypertension without hypokalaemia,” Journal of Human Hypertension, vol. 20, no. 2, pp. 129–136, 2006.
[24]  D. A. Calhoun, M. K. Nishizaka, M. A. Zaman, R. B. Thakkar, and P. Weissmann, “Hyperaldosteronism among black and white subjects with resistant hypertension,” Hypertension, vol. 40, no. 6, pp. 892–896, 2002.
[25]  B. J. Gallay, “Screening for primary aldosteronism without discontinuing hypertensive medications: plasma aldosterone-renin ratio,” American Journal of Kidney Diseases, vol. 37, no. 4, pp. 699–705, 2001.
[26]  B. Strauch, T. Zelinka, M. Hampf, et al., “Prevalence of primary aldosteronism in moderate to severe hypertension in the Central Europe region,” Journal of Human Hypertension, vol. 17, pp. 349–352, 2003.
[27]  A. Di Murro, L. Petramala, D. Cotesta et al., “Renin-angiotensin-aldosterone system in patients with sleep apnoea: prevalence of primary aldosteronism,” Journal of the Renin-Angiotensin-Aldosterone System, vol. 11, no. 3, pp. 165–172, 2010.
[28]  J. J. Mukherjee, C. M. Khoo, A. C. Thai, S. B. Chionh, L. Pin, and K. O. Lee, “Type 2 diabetic patients with resistant hypertension should be screened for primary aldosteronism,” Diabetes and Vascular Disease Research, vol. 7, no. 1, pp. 6–13, 2010.
[29]  G. E. Umpierrez, P. Cantey, D. Smiley et al., “Primary Aldosteronism in diabetic subjects with resistant hypertension,” Diabetes Care, vol. 30, no. 7, pp. 1699–1703, 2007.
[30]  V. M. Montori and W. F. Young, “Use of plasma aldosterone concentration-to-plasma renin activity ratio as a screening test for primary aldosteronism: A systematic review of the literature,” Endocrinology and Metabolism Clinics of North America, vol. 31, no. 3, pp. 619–632, 2002.
[31]  N. M. Kaplan, “Is there an unrecognized epidemic of primary aldosteronism? Con.,” Hypertension, vol. 50, no. 3, pp. 454–458, 2007.
[32]  L. Mosso, C. Carvajal, A. González et al., “Primary aldosteronism and hypertensive disease,” Hypertension, vol. 42, no. 2, pp. 161–165, 2003.
[33]  G. P. Rossi, T. M. Seccia, G. Palumbo et al., “Within-patient reproducibility of the aldosterone:renin ratio in primary aldosteronism,” Hypertension, vol. 55, no. 1, pp. 83–89, 2010.
[34]  D. Hiroara, K. Nomura, T. Okamoto, et al., “Performance of the basal aldosterone to renin ratio and of renin stimulation test by furosemide and upright posture in screening for aldosterone-producing adenoma in low-renin hypertensives,” The Journal of Clinical Endocrinology & Metabolism, vol. 86, pp. 4292–4298, 2001.
[35]  I. K. Eide, P. A. Torjesen, A. Drolsum, A. Babovic, and N. P. Lilledahl, “Low-renin status in therapy-resistant hypertension: a clue to efficient treatment,” Journal of Hypertension, vol. 22, no. 11, pp. 2217–2226, 2004.
[36]  M. N. Pratt-Ubunama, M. K. Nishizaka, R. L. Boedefeld, S. S. Cofield, S. M. Harding, and D. A. Calhoun, “Plasma aldosterone is related to severity of obstructive sleep apnea in subjects with resistant hypertension,” Chest, vol. 131, no. 2, pp. 453–459, 2007.
[37]  T. L. Goodfriend and D. A. Calhoun, “Resistant hypertension, obesity, sleep apnea, and aldosterone: theory and therapy,” Hypertension, vol. 43, no. 3, pp. 518–524, 2004.
[38]  S. H. Saydah, J. Fradkin, and C. C. Cowie, “Poor control of risk factors for vascular disease among adults with previously diagnosed diabetes,” Journal of the American Medical Association, vol. 291, no. 3, pp. 335–342, 2004.
[39]  A. I. Adler, I. M. Stratton, H. A. W. Neil et al., “Association of systolic blood pressure with macrovascular and microvascular complications of type 2 diabetes (UKPDS 36): prospective observational study,” British Medical Journal, vol. 321, no. 7258, pp. 412–419, 2000.
[40]  P. Milliez, X. Girerd, P. F. Plouin, J. Blacher, M. E. Safar, and J. J. Mourad, “Evidence for an increased rate of cardiovascular events in patients with primary aldosteronism,” Journal of the American College of Cardiology, vol. 45, no. 8, pp. 1243–1248, 2005.
[41]  C. Catena, G. Colussi, R. Lapenna et al., “Long-term cardiac effects of adrenalectomy or mineralocorticoid antagonists in patients with primary aldosteronism,” Hypertension, vol. 50, no. 5, pp. 911–918, 2007.
[42]  J. Funder, “Mineralcorticoids and cardiac fibrosis,” Clinical and Experimental Pharmacology and Physiology, vol. 28, pp. 1002–1006, 2001.
[43]  C. Catena, G. Colussi, E. Nadalini et al., “Cardiovascular outcomes in patients with primary aldosteronism after treatment,” Archives of Internal Medicine, vol. 168, no. 1, pp. 80–85, 2008.
[44]  E. Born-Frontsberg, M. Reinke, L. C. Rump, et al., “Cardiovascular and cerebrovascular comorbidities of hypokaliemic and normokalemic primary aldosteronism: results of the German Conn's Registry,” The Journal of Clinical Endocrinology & Metabolism, vol. 94, pp. 1125–1130, 2009.
[45]  A. Tomaschitz, S. Pilz, E. Ritz, A. Meinitzer, B. O. Boehm, and W. M?rz, “Plasma aldosterone levels are associated with increased cardiovascular mortality: the Ludwigshafen Risk and Cardiovascular Health (LURIC) study,” European Heart Journal, vol. 31, no. 10, pp. 1237–1247, 2010.
[46]  B. Pitt, F. Zannad, W. J. Remme, et al., “The effect of spironolactone on morbidity and mortality in patients with severe heart failure: randomized Aldactone Study Investigators,” The New England Journal of Medicine, vol. 341, pp. 709–717, 1999.
[47]  S. D. Navaneethan, S. U. Nigwekar, A. R. Sehgal, and G. F. M. Strippoli, “Aldosterone antagonists for preventing the progression of chronic kidney disease: a systematic review and meta-analysis,” Clinical Journal of the American Society of Nephrology, vol. 4, no. 3, pp. 542–551, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133