全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Vascular Damage in Kidney Disease: Beyond Hypertension

DOI: 10.4061/2011/232683

Full-Text   Cite this paper   Add to My Lib

Abstract:

Chronic kidney disease (CKD) is highly prevalent and a multiplier of cardiovascular disease (CVD) and cannot be completely explained by traditional Framinghan risk factors. Consequently, greater emphasis has been placed in nontraditional risk factors, such as inflammation, endothelial dysfunction, sympathetic overactivation, protein-energy wasting oxidative stress, vascular calcification, and volume overload. The accumulation of uremic toxins (and the involvement of genetic factors) is responsible for many of the clinical consequences of a condition known as uremia. In this brief paper, we discuss mechanisms involved in the vascular damage of CKD patients, aiming to point out that important factors beyond hypertension are largely responsible for endothelial activation and increased CVD risk, with potential impact on risk stratification and development of novel therapeutic options. 1. Introduction Chronic kidney disease (CKD) is a disease in exponential growth, and, along with other chronic diseases, is responsible for 25 million deaths per year, mainly due to the multiplication of cardiovascular disease (CVD) [1]. Cardiovascular disease is independently associated with CKD, and this cardiovascular risk cannot be completely explained by traditional Framinghan risk factors (age, lifestyle, left ventricular hypertrophy, dyslipidemia, hypertension, and diabetes mellitus) [2]. Consequently, greater emphasis has been placed in nontraditional risk factors, such as inflammation, endothelial dysfunction, sympathetic overactivation, protein-energy wasting oxidative stress, vascular calcification, and volume overload [3, 4]. In patients with stage 5 CKD, CVD risk is five times greater than in the general population, even after stratification for age, sex, race, and diabetes [5]. Hypertension is very common in this population, and its prevalence increases with progression of the disease. Moreover, with retention of sodium, expansion of extracellular volume, and activation of renin angiotensin system, all highly prevalent in CKD, hypertension becomes refractory to treatment and an universal condition in advanced stages of CKD. However, hypertension alone, although important and highly prevalent, cannot by itself justify the enormous cardiovascular burden in CKD. In the progression of CKD, the kidneys lose their ability to effectively remove toxic compounds from the bloodstream for subsequent formation of urine, resulting in its accumulation in the body. The accumulation of these uremic toxins (and the involvement of genetic factors) is responsible for many of the

References

[1]  M. El Nahas, “Cardio-kidney-damage: a unifying concept,” Kidney International, vol. 78, no. 1, pp. 14–18, 2010.
[2]  A. A. House, M. Haapio, J. Lassus, R. Bellomo, and C. Ronco, “Therapeutic strategies for heart failure in cardiorenal syndromes,” American Journal of Kidney Diseases, vol. 56, no. 4, pp. 759–773, 2010.
[3]  P. Stenvinkel, J. J. Carrero, J. Axelsson, B. Lindholm, O. Heimburger, and Z. Massy, “Emerging biomarkers for evaluating cardiovascular risk in the chronic kidney disease patient: how do new pieces fit into the uremic puzzle?” Clinical Journal of the American Society of Nephrology, vol. 3, no. 2, pp. 505–521, 2008.
[4]  P. Stenvinkel, “Chronic kidney disease: a public health priority and harbinger of premature cardiovascular disease,” Journal of Internal Medicine, vol. 268, no. 5, pp. 456–467, 2010.
[5]  B. K. Meijers, K. Claes, B. Bammens et al., “p—and cardiovascular risk in mild-to-moderate kidney disease,” Clinical Journal of the American Society of Nephrology, vol. 5, no. 7, pp. 1182–1189, 2010.
[6]  R. J. Glassock, “Uremic toxins: what are they? An integrated overview of pathobiology and classification,” Journal of Renal Nutrition, vol. 18, no. 1, pp. 2–6, 2008.
[7]  J. Himmelfarb, “Uremic toxicity, oxidative stress, and hemodialysis as renal replacement therapy,” Seminars in Dialysis, vol. 22, no. 6, pp. 636–643, 2009.
[8]  R. Vanholder, S. Van Laecke, and G. Glorieux, “What is new in uremic toxicity?” Pediatric Nephrology, vol. 23, no. 8, pp. 1211–1221, 2008.
[9]  R. Vanholder, R. De Smet, G. Glorieux et al., “Review on uremic toxins: classification, concentration, and interindividual variability,” Kidney International, vol. 63, no. 5, pp. 1934–1943, 2003.
[10]  R. Vanholder, A. Argiles, U. Baurmeister et al., “Uremic toxicity: present state of the art,” International Journal of Artificial Organs, vol. 24, no. 10, pp. 695–725, 2001.
[11]  J. Malyszko, “Mechanism of endothelial dysfunction in chronic kidney disease,” Clinica Chimica Acta, vol. 411, no. 19-20, pp. 1412–1420, 2010.
[12]  D. Fliser, “Perspectives in renal disease progression: the endothelium as a treatment target in chronic kidney disease,” Journal of Nephrology, vol. 23, no. 4, pp. 369–376, 2010.
[13]  G. Cohen, G. Glorieux, P. Thornalley et al., “Review on uraemic toxins III: recommendations for handling uraemic retention solutes in vitro—towards a standardized approach for research on uraemia,” Nephrology Dialysis Transplantation, vol. 22, no. 12, pp. 3381–3390, 2007.
[14]  M. S. Segal, C. Baylis, and R. J. Johnson, “Endothelial health and diversity in the kidney,” Journal of the American Society of Nephrology, vol. 17, no. 2, pp. 323–324, 2006.
[15]  J. A. Diaz-Buxo and H. F. Woods, “Protecting the endothelium: a new focus for management of chronic kidney disease,” Hemodialysis International, vol. 10, no. 1, pp. 42–48, 2006.
[16]  L. Dou, N. Jourde-Chiche, V. Faure et al., “The uremic solute indoxyl sulfate induces oxidative stress in endothelial cells,” Journal of Thrombosis and Haemostasis, vol. 5, no. 6, pp. 1302–1308, 2007.
[17]  S. Bro, J. F. Bentzon, E. Falk, C. B. Andersen, K. Olgaard, and L. B. Nielsen, “Chronic renal failure accelerates atherogenesis in apolipoprotein E-deficient mice,” Journal of the American Society of Nephrology, vol. 14, no. 10, pp. 2466–2474, 2003.
[18]  M. Buzello, J. T?rnig, J. Faulhaber, H. Ehmke, E. Ritz, and K. Amann, “The apolipoprotein E knockout mouse: a model documenting accelerated atherogenesis in uremia,” Journal of the American Society of Nephrology, vol. 14, no. 2, pp. 311–316, 2003.
[19]  P. Brunet, B. Gondouin, A. Duval-Sabatier, L. Dou, C. Cerini, F. Dignat-George, et al., “Does uremia cause vascular dysfunction?” Kidney and Blood Pressure Research, vol. 34, no. 4, pp. 284–290, 2011.
[20]  S. Zieman and D. Kass, “Advanced glycation end product cross-linking: pathophysiologic role and therapeutic target in cardiovascular disease,” Congestive Heart Failure, vol. 10, no. 3, pp. 144–151, 2004.
[21]  P. M. Vanhoutte, M. Feletou, and S. Taddei, “Endothelium-dependent contractions in hypertension,” British Journal of Pharmacology, vol. 144, no. 4, pp. 449–458, 2005.
[22]  D. Fliser, F. Kronenberg, J. T. Kielstein et al., “Asymmetric dimethylarginine and progression of chronic kidney disease: the mild to moderate kidney disease study,” Journal of the American Society of Nephrology, vol. 16, no. 8, pp. 2456–2461, 2005.
[23]  R. H. Boger, S. M. Bode-Boger, K. Sydow, D. D. Heistad, and S. R. Lentz, “Plasma concentration of asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase, is elevated in monkeys with hyperhomocyst(e)inemia or hypercholesterolemia,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 20, no. 6, pp. 1557–1564, 2000.
[24]  R. Vanholder, U. Baurmeister, P. Brunet, G. Cohen, G. Glorieux, and J. Jankowski, “A bench to bedside view of uremic toxins,” Journal of the American Society of Nephrology, vol. 19, no. 5, pp. 863–870, 2008.
[25]  R. Vanholder, S. van Laecke, and G. Glorieux, “The middle-molecule hypothesis 30 years after: lost and rediscovered in the universe of uremic toxicity?” Journal of Nephrology, vol. 21, no. 2, pp. 146–160, 2008.
[26]  J. R. Stubbs and J. B. Wetmore, “Does it matter how parathyroid hormone levels are suppressed in secondary hyperparathyroidism?” Seminars in Dialysis, vol. 24, no. 3, pp. 298–306, 2011.
[27]  K. R. Neves, F. G. Graciolli, L. M. dos Reis et al., “Vascular calcification: contribution of parathyroid hormone in renal failure,” Kidney International, vol. 71, no. 12, pp. 1262–1270, 2007.
[28]  A. E. Stinghen, S. M. Goncalves, E. G. Martines et al., “Increased plasma and endothelial cell expression of chemokines and adhesion molecules in chronic kidney disease,” Nephron Clinical Practice, vol. 111, no. 2, pp. c117–c126, 2009.
[29]  A. B. Hauser, I. R. Azevedo, S. Goncalves, A. Stinghen, C. Aita, and R. Pecoits-Filho, “Sevelamer carbonate reduces inflammation and endotoxemia in an animal model of uremia,” Blood Purification, vol. 30, no. 3, pp. 153–158, 2010.
[30]  S. Goncalves, R. Pecoits-Filho, S. Perreto et al., “Associations between renal function, volume status and endotoxaemia in chronic kidney disease patients,” Nephrology Dialysis Transplantation, vol. 21, no. 10, pp. 2788–2794, 2006.
[31]  B. Aline, A. E. M. S. Hauser, M. G. Simone, S. Bucharles, and R. Pecoits-Filho, “A gut feeling on endotoxemia: causes and consequences in chronic kidney disease,” Nephron Clinical Practice, vol. 118, no. 2, pp. c165–c172, 2010.
[32]  T. Gunthner, V. Jankowski, A. Kretschmer et al., “Endothelium and vascular smooth muscle cells in the context of uremia,” Seminars in Dialysis, vol. 22, no. 4, pp. 428–432, 2009.
[33]  P. Stenvinkel and T. J. Ekstrom, “Epigenetics—a helpful tool to better understand processes in clinical nephrology?” Nephrology Dialysis Transplantation, vol. 23, no. 5, pp. 1493–1496, 2008.
[34]  P. Stenvinkel, M. Karimi, S. Johansson et al., “Impact of inflammation on epigenetic DNA methylation—a novel risk factor for cardiovascular disease?” Journal of Internal Medicine, vol. 261, no. 5, pp. 488–499, 2007.
[35]  D. Ingrosso, A. Cimmino, A. F. Perna et al., “Folate treatment and unbalanced methylation and changes of allelic expression induced by hyperhomocysteinaemia in patients with uraemia,” The Lancet, vol. 361, no. 9370, pp. 1693–1699, 2003.
[36]  Y. S. Huang, Y. F. Zhi, and S. R. Wang, “Hypermethylation of estrogen receptor-α gene in atheromatosis patients and its correlation with homocysteine,” Pathophysiology, vol. 16, no. 4, pp. 259–265, 2009.
[37]  J. Yi-Deng, S. Tao, Z. Hui-Ping et al., “Folate and ApoE DNA methylation induced by homocysteine in human monocytes,” DNA and Cell Biology, vol. 26, no. 10, pp. 737–744, 2007.
[38]  G. Zaza, P. Pontrelli, G. Pertosa et al., “Dialysis-related systemic microinflammation is associated with specific genomic patterns,” Nephrology Dialysis Transplantation, vol. 23, no. 5, pp. 1673–1681, 2008.
[39]  N. Karin, “The multiple faces of CXCL12 (SDF-1α) in the regulation of immunity during health and disease,” Journal of Leukocyte Biology, vol. 88, no. 3, pp. 463–473, 2010.
[40]  P. Rueda, K. Balabanian, B. Lagane et al., “The CXCL12γ chemokine displays unprecedented structural and functional properties that make it a paradigm of chemoattractant proteins,” PLoS ONE, vol. 3, no. 7, Article ID e2543, 2008.
[41]  F. Barbieri, A. Bajetto, C. Porcille, A. Pattarozzi, G. Schettini, and T. Florio, “Role of stromal cell-derived factor 1 (SDF1/CXCL12) in regulating anterior pituitary function,” Journal of Molecular Endocrinology, vol. 38, no. 3-4, pp. 383–389, 2007.
[42]  S. Ghadge, S. Muhlstedt, C. Ozcelik, and M. Bader, “SDF-1α as a therapeutic stem cell homing factor in myocardial infarction,” Pharmacology & Therapeutics, vol. 129, pp. 97–108, 2011.
[43]  K. E. Jie, M. A. Zaikova, M. W. Bergevoet et al., “Progenitor cells and vascular function are impaired in patients with chronic kidney disease,” Nephrology Dialysis Transplantation, vol. 25, no. 6, pp. 1875–1882, 2010.
[44]  A. Kottgen, “Genome-wide association studies in nephrology research,” American Journal of Kidney Diseases, vol. 56, no. 4, pp. 743–758, 2010.
[45]  V. O. Shah, E. A. Dominic, P. Moseley et al., “Hemodialysis modulates gene expression profile in skeletal muscle,” American Journal of Kidney Diseases, vol. 48, no. 4, pp. 616–628, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133