全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Molecular Classification of Hepatocellular Adenomas

DOI: 10.1155/2013/315947

Full-Text   Cite this paper   Add to My Lib

Abstract:

Hepatocellular adenomas (HCAs) are benign tumors developed in normal liver most frequently in women before menopause. HCAs lead to diagnostic pitfalls and several difficulties to assess the risk of malignant transformation in these young patients. Recent advances in basic knowledge have revealed a molecular classification related to risk factors, pathological features, and risk of transformation in hepatocellular carcinoma. Three major molecular pathways have been identified altered in specific HCA subgroups that are defined by either (1) inactivation of hepatocyte nuclear factor 1A (HNF1A) transcription factor, (2) activation of the WNT/β-catenin by CTNNB1 mutations, or (3) activation of the IL6/STAT3 pathway by somatic mutation of IL6ST, GNAS, or STAT3. Here, we will review the different molecular classes of HCA. 1. Introduction Hepatocellular tumors deriving from monoclonal proliferation of hepatocytes are classically divided in benign hepatocellular adenoma (HCA) and malignant hepatocellular carcinoma (HCC). HCAs are rare tumors most frequently-developed in women before menoaupose and after a long-term use of oral contraception [1]. Other risk factors such as glycogen storage diseases and androgen intake are also classically associated with HCA development. HCA could be complicated frequently by hemorrhage and more rarely by malignant transformation in HCC [2, 3]. For a long time, HCA was considered as a benign monoclonal proliferation of hepatocytes driven by oestrogen exposition [4, 5]. However, molecular classification has redrawn the physiopathological and clinical landscape of HCA [6]. This new classification linked specific risk factor, clinical history, and histological features to each molecular subgroup of HCA [6–9]. In addition, this genotype/phenotype classification has been validated by several groups worldwide demonstrating its robustness and its wide reproductibility in clinical practice [10–15]. In this paper we aimed to describe how genomic analyses enabled us to identify the different HCA molecular subgroups and their specific molecular defects. 2. Molecular Classification of Hepatocellular Adenomas 2.1. Adenomas Inactivated for HNF1A (H-HCA) In 2002, we identified HNF1A, as the first driver gene inactivated by mutation in hepatocellular adenomas [16]. HNF1A codes for the hepatocyte nuclear factor??1??A, a transcription factor involved in hepatocyte differentiation and metabolism control [17]. Previously, in 1996, Yamagata and collaborators had identified germline mutations of HNF1A as the causal alteration of the specific diabetes

References

[1]  D. Cherqui, A. Rahmouni, F. Charlotte et al., “Management of focal nodular hyperplasia and hepatocellular adenoma in young women: a series of 41 patients with clinical, radiological, and pathological correlations,” Hepatology, vol. 22, no. 6, pp. 1674–1681, 1995.
[2]  D. Erdogan, O. R. C. Busch, O. M. van Delden, F. J. W. ten Kate, D. J. Gouma, and T. M. van Gulik, “Management of spontaneous haemorrhage and rupture of hepatocellular adenomas. A single centre experience,” Liver International, vol. 26, no. 4, pp. 433–438, 2006.
[3]  J. L. Deneve, T. M. Pawlik, S. Cunningham et al., “Liver cell adenoma: a multicenter analysis of risk factors for rupture and malignancy,” Annals of Surgical Oncology, vol. 16, no. 3, pp. 640–648, 2009.
[4]  H. A. Edmondson, B. Henderson, and B. Benton, “Liver cell adenomas associated with use of oral contraceptives,” The New England Journal of Medicine, vol. 294, no. 9, pp. 470–472, 1976.
[5]  Y. J. Chen, P. J. Chen, M. C. Lee, S. H. Yeh, M. T. Hsu, and C. H. Lin, “Chromosomal analysis of hepatic adenoma and focal nodular hyperplasia by comparative genomic hybridization,” Genes Chromosomes and Cancer, vol. 35, no. 2, pp. 138–143, 2002.
[6]  J. Zucman-Rossi, E. Jeannot, J. T. van Nhieu et al., “Genotype-phenotype correlation in hepatocellular adenoma: new classification and relationship with HCC,” Hepatology, vol. 43, no. 3, pp. 515–524, 2006.
[7]  P. Bioulac-Sage, J. Frédéric Blanc, S. Rebouissou, C. Balabaud, and J. Zucman-Rossi, “Genotype phenotype classification of hepatocellular adenoma,” World Journal of Gastroenterology, vol. 13, no. 19, pp. 2649–2654, 2007.
[8]  S. Rebouissou, P. Bioulac-Sage, and J. Zucman-Rossi, “Molecular pathogenesis of focal nodular hyperplasia and hepatocellular adenoma,” Journal of Hepatology, vol. 48, no. 1, pp. 163–170, 2008.
[9]  H. Laumonier, P. Bioulac-Sage, C. Laurent, J. Zucman-Rossi, C. Balabaud, and H. Trillaud, “Hepatocellular adenomas: magnetic resonance imaging features as a function of molecular pathological classification,” Hepatology, vol. 48, no. 3, pp. 808–818, 2008.
[10]  S. M. van Aalten, J. Verheij, T. Terkivatan, R. S. Dwarkasing, R. A. De Man, and J. N. M. Ijzermans, “Validation of a liver adenoma classification system in a tertiary referral centre: implications for clinical practice,” Journal of Hepatology, vol. 55, no. 1, pp. 120–125, 2011.
[11]  S. Dokmak, V. Paradis, V. Vilgrain et al., “A single-center surgical experience of 122 patients with single and multiple hepatocellular adenomas,” Gastroenterology, vol. 137, no. 5, pp. 1698–1705, 2009.
[12]  P. Bioulac-Sage, S. Rebouissou, C. Thomas et al., “Hepatocellular adenoma subtype classification using molecular markers and immunohistochemistry,” Hepatology, vol. 46, no. 3, pp. 740–748, 2007.
[13]  C. O. Bellamy, R. S. Maxwell, S. Prost, I. A. Azodo, J. J. Powell, and J. R. Manning, “The value of immunophenotyping hepatocellular adenomas: consecutive resections at one UK centre,” Histopathology. In press.
[14]  M. Sasaki and Y. Nakanuma, “Overview of hepatocellular adenoma in Japan,” International Journal of Hepatology, vol. 2012, Article ID 648131, 6 pages, 2012.
[15]  M. Ronot, S. Bahrami, J. Calderaro et al., “Hepatocellular adenomas: accuracy of magnetic resonance imaging and liver biopsy in subtype classification,” Hepatology, vol. 53, no. 4, pp. 1182–1191, 2011.
[16]  O. Bluteau, E. Jeannot, P. Bioulac-Sage et al., “Bi-allelic inactivation of TCF1 in hepatic adenomas,” Nature Genetics, vol. 32, no. 2, pp. 312–315, 2002.
[17]  D. T. Odom, H. Zizlsperger, D. B. Gordon et al., “Control of pancreas and liver gene expression by HNF transcription factors,” Science, vol. 303, no. 5662, pp. 1378–1381, 2004.
[18]  K. Yamagata, N. Oda, P. J. Kaisaki et al., “Mutations in the hepatocyte nuclear factor-1α gene in maturity-onset diabetes of the young (MODY3),” Nature, vol. 384, no. 6608, pp. 455–458, 1996.
[19]  Y. Bacq, E. Jacquemin, C. Balabaud et al., “Familial liver adenomatosis associated with hepatocyte nuclear factor 1α inactivation,” Gastroenterology, vol. 125, no. 5, pp. 1470–1475, 2003.
[20]  E. Jeannot, G. Lacape, H. Gin et al., “Double heterozygous germline HNF1A mutations in a patient with liver adenomatosis,” Diabetes Care, vol. 35, no. 5, p. e35, 2012.
[21]  J. F. Flejou, J. Barge, and Y. Menu, “Liver adenomatosis. An entity distinct from liver adenoma?” Gastroenterology, vol. 89, no. 5, pp. 1132–1138, 1985.
[22]  L. Chiche, T. Dao, E. Salamé et al., “Liver adenomatosis: reappraisal, diagnosis, and surgical management: eight new cases and review of the literature,” Annals of Surgery, vol. 231, no. 1, pp. 74–81, 2000.
[23]  L. Pelletier, S. Rebouissou, D. Vignjevic, P. Bioulac-Sage, and J. Zucman-Rossi, “HNF1α inhibition triggers epithelial-mesenchymal transition in human liver cancer cell lines,” BMC Cancer, vol. 11, p. 427, 2011.
[24]  L. Pelletier, S. Rebouissou, A. Paris et al., “Loss of hepatocyte nuclear factor 1α function in human hepatocellular adenomas leads to aberrant activation of signaling pathways involved in tumorigenesis,” Hepatology, vol. 51, no. 2, pp. 557–566, 2010.
[25]  E. Jeannot, K. Poussin, L. Chiche et al., “Association of CYP1B1 germ line mutations with hepatocyte nuclear factor 1α-mutated hepatocellular adenoma,” Cancer Research, vol. 67, no. 6, pp. 2611–2616, 2007.
[26]  S. Rebouissou, S. Imbeaud, C. Balabaud et al., “HNF1α inactivation promotes lipogenesis in human hepatocellular adenoma independently of SREBP-1 and carbohydrate-response element-binding protein (ChREBP) activation,” Journal of Biological Chemistry, vol. 282, no. 19, pp. 14437–14446, 2007.
[27]  P. Bioulac-Sage, G. Cubel, S. Taouji et al., “Immunohistochemical markers on needle biopsies are helpful for the diagnosis of focal nodular hyperplasia and hepatocellular adenoma subtypes,” The American Journal of Surgical Pathology, vol. 36, no. 11, pp. 1691–1699, 2012.
[28]  H. Clevers and R. Nusse, “Wnt/beta-catenin signaling and disease,” Cell, vol. 149, no. 6, pp. 1192–1205, 2012.
[29]  J. C. Nault and J. Zucman-Rossi, “Genetics of hepatobiliary carcinogenesis,” Seminars in Liver Disease, vol. 31, no. 2, pp. 173–187, 2011.
[30]  A. Micsenyi, X. Tan, T. Sneddon, J. H. Luo, G. K. Michalopoulos, and S. P. S. Monga, “β-catenin is temporally regulated during normal liver development,” Gastroenterology, vol. 126, no. 4, pp. 1134–1146, 2004.
[31]  S. Colnot, T. Decaens, M. Niwa-Kawakita et al., “Liver-targeted disruption of Apc in mice activates β-catenin signaling and leads to hepatocellular carcinomas,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 49, pp. 17216–17221, 2004.
[32]  S. Benhamouche, T. Decaens, C. Godard et al., “Apc tumor suppressor gene is the “zonation-keeper” of mouse liver,” Developmental Cell, vol. 10, no. 6, pp. 759–770, 2006.
[33]  Y. W. Chen, Y. M. Jeng, S. H. Yeh, and P. J. Chen, “p53 gene and Wnt signaling in benign neoplasms: β-catenin mutations in hepatic adenoma but not in focal nodular hyperplasia,” Hepatology, vol. 36, no. 4, pp. 927–935, 2002.
[34]  P. Bioulac-Sage, H. Laumonier, G. Couchy et al., “Hepatocellular adenoma management and phenotypic classification: the Bordeaux experience,” Hepatology, vol. 50, no. 2, pp. 481–489, 2009.
[35]  P. Bioulac-Sage, G. Cubel, C. Balabaud, and J. Zucman-Rossi, “Revisiting the pathology of resected benign hepatocellular nodules using new immunohistochemical markers,” Seminars in Liver Disease, vol. 31, no. 1, pp. 91–103, 2011.
[36]  S. van der Borght, L. Libbrecht, A. Katoonizadeh et al., “Nuclear β-catenin staining and absence of steatosis are indicators of hepatocellular adenomas with an increased risk of malignancy,” Histopathology, vol. 51, no. 6, pp. 855–856, 2007.
[37]  O. Farges, N. Ferreira, S. Dokmak, J. Belghiti, P. Bedossa, and V. Paradis, “Changing trends in malignant transformation of hepatocellular adenoma,” Gut, vol. 60, no. 1, pp. 85–89, 2011.
[38]  L. Di Tommaso, G. Franchi, N. P. Young et al., “Diagnostic value of HSP70, glypican 3, and glutamine synthetase in hepatocellular nodules in cirrhosis,” Hepatology, vol. 45, no. 3, pp. 725–734, 2007.
[39]  S. M. Lagana, M. Salomao, F. Bao, R. K. Moreira, J. H. Lefkowitch, and H. E. Remotti, “Utility of an immunohistochemical panel consisting of glypican-3, heat-shock protein-70, and glutamine synthetase in the distinction of low-grade hepatocellular carcinoma from hepatocellular adenoma,” Applied Immunohistochemistry & Molecular Morphology. In press.
[40]  P. Bioulac-Sage, S. Rebouissou, A. Sa Cunha et al., “Clinical, morphologic, and molecular features defining so-called telangiectatic focal nodular hyperplasias of the liver,” Gastroenterology, vol. 128, no. 5, pp. 1211–1218, 2005.
[41]  S. I. Grivennikov, F. R. Greten, and M. Karin, “Immunity, inflammation, and cancer,” Cell, vol. 140, no. 6, pp. 883–899, 2010.
[42]  S. Rebouissou, M. Amessou, G. Couchy et al., “Frequent in-frame somatic deletions activate gp130 in inflammatory hepatocellular tumours,” Nature, vol. 457, no. 7226, pp. 200–204, 2009.
[43]  V. Paradis, A. Benzekri, D. Dargére et al., “Telangiectatic focal nodular hyperplasia: a variant of hepatocellular adenoma,” Gastroenterology, vol. 126, no. 5, pp. 1323–1329, 2004.
[44]  D. A. Weinstein, C. N. Roy, M. D. Fleming, M. F. Loda, J. I. Wolfsdorf, and N. C. Andrews, “Inappropriate expression of hepcidin is associated with iron refractory anemia: implications for the anemia of chronic disease,” Blood, vol. 100, no. 10, pp. 3776–3781, 2002.
[45]  A. Sa Cunha, J. F. Blanc, E. Lazaro et al., “Inflammatory syndrome with liver adenomatosis: the beneficial effects of surgical management,” Gut, vol. 56, no. 2, pp. 307–309, 2007.
[46]  V. Paradis, A. Champault, M. Ronot et al., “Telangiectatic adenoma: an entity associated with increased body mass index and inflammation,” Hepatology, vol. 46, no. 1, pp. 140–146, 2007.
[47]  Y. S. Chun, J. Calderaro, and J. Zucman-Rossi, “Synchronous hepatocellular carcinoma and Castleman's disease: the role of the interleukin-6-signaling pathway,” Hepatology, vol. 56, no. 1, pp. 392–393, 2012.
[48]  J. Sommer, T. Effenberger, E. Volpi et al., “Constitutively active mutant gp130 receptor protein from inflammatory hepatocellular adenoma is inhibited by an anti-gp130 antibody that specifically neutralizes interleukin 11 signaling,” The Journal of Biological Chemistry, vol. 287, no. 17, pp. 13743–13751, 2012.
[49]  C. Pilati, M. Amessou, M. P. Bihl et al., “Somatic mutations activating STAT3 in human inflammatory hepatocellular adenomas,” Journal of Experimental Medicine, vol. 208, no. 7, pp. 1359–1366, 2011.
[50]  J. C. Nault, M. Fabre, G. Couchy et al., “GNAS-activating mutations define a rare subgroup of inflammatory liver tumors characterized by STAT3 activation,” Journal of Hepatology, vol. 56, no. 1, pp. 184–191, 2012.
[51]  L. S. Weinstein, J. Liu, A. Sakamoto, T. Xie, and M. Chen, “Minireview: GNAS: normal and abnormal functions,” Endocrinology, vol. 145, no. 12, pp. 5459–5464, 2004.
[52]  L. S. Weinstein, A. Shenker, P. V. Gejman, M. J. Merino, E. Friedman, and A. M. Spiegel, “Activating mutations of the stimulatory G protein in the McCune-Albright syndrome,” The New England Journal of Medicine, vol. 325, no. 24, pp. 1688–1695, 1991.
[53]  M. P. Bralet, J. M. Régimbeau, P. Pineau et al., “Hepatocellular carcinoma occurring in nonfibrotic liver: epidemiologic and histopathologic analysis of 80 french cases,” Hepatology, vol. 32, no. 2, pp. 200–204, 2000.
[54]  W. M. Christopherson, E. T. Mays, and G. Barrows, “A clinicopathologic study of steroid-related liver tumors,” American Journal of Surgical Pathology, vol. 1, no. 1, pp. 31–41, 1977.
[55]  J. B. Rooks, H. W. Ory, and K. G. Ishak, “Epidemiology of hepatocellular adenoma. The role of oral contraceptive use,” Journal of the American Medical Association, vol. 242, no. 7, pp. 644–648, 1979.
[56]  I. Buehler, M. Pirovino, and A. Akovbiantz, “Regression of liver cell adenoma. A follow-up study of three consecutive patients after discontinuation of oral contraceptive use,” Gastroenterology, vol. 82, no. 4, pp. 775–782, 1982.
[57]  J. B. Rooks, H. W. Ory, and K. G. Ishak, “The association between oral contraception and hepatocellular adenoma—a preliminary report,” International Journal of Gynecology and Obstetrics, vol. 15, no. 2, pp. 143–144, 1977.
[58]  L. A. J. Heinemann, A. Weimann, G. Gerken, C. Thiel, M. Schlaud, and T. DoMinh, “Modern oral contraceptive use and benign liver tumors: the German Benign Liver Tumor Case-Control Study,” European Journal of Contraception and Reproductive Health Care, vol. 3, no. 4, pp. 194–200, 1998.
[59]  P. Bioulac-Sage, S. Taouji, L. Possenti, and C. Balabaud, “Hepatocellular adenoma subtypes: the impact of overweight and obesity,” Liver International, vol. 32, no. 8, pp. 1217–1221, 2012.
[60]  E. Jeannot, L. Mellottee, P. Bioulac-Sage et al., “Spectrum of HNF1A somatic mutations in hepatocellular adenoma differs from that in patients with MODY3 and suggests genotoxic damage,” Diabetes, vol. 59, no. 7, pp. 1836–1844, 2010.
[61]  P. Labrune, P. Trioche, I. Duvaltier, P. Chevalier, and M. Odièvre, “Hepatocellular adenomas in glycogen storage disease type I and III: a series of 43 patients and review of the literature,” Journal of Pediatric Gastroenterology and Nutrition, vol. 24, no. 3, pp. 276–279, 1997.
[62]  E. Mutel, A. Abdul-Wahed, N. Ramamonjisoa et al., “Targeted deletion of liver glucose-6 phosphatase mimics glycogen storage disease type 1a including development of multiple adenomas,” Journal of Hepatology, vol. 54, no. 3, pp. 529–537, 2011.
[63]  P. S. Kishnani, T. P. Chuang, D. Bali et al., “Chromosomal and genetic alterations in human hepatocellular adenomas associated with type Ia glycogen storage disease,” Human Molecular Genetics, vol. 18, no. 24, pp. 4781–4790, 2009.
[64]  M. Svrcek, E. Jeannot, L. Arrivé et al., “Regressive liver adenomatosis following androgenic progestin therapy withdrawal: a case report with a 10-year follow-up and a molecular analysis,” European Journal of Endocrinology, vol. 156, no. 6, pp. 617–621, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133