Portal vein tumor thrombosis (PVTT) is a common complication of hepatocellular carcinoma (HCC) and has a negative impact on prognosis. This characteristic feature led to the rationale of the present trial designed to assess the efficacy and the safety of yttrium-90 glass-microsphere treatment for advanced-stage lobar HCC with ipsilateral PVTT. 18 patients with unresectable lobar HCC and ipsilateral PVTT were treated in our institution with 90Y-microS radioembolization. Patients were evaluated every 3 to 6 months for response, survival, and toxicity. Mean follow-up was 13.0 months (2.2–50.6). Outcomes were: complete response ( ), partial response ( ), stable disease ( ), and progressive disease ( ) giving a disease control rate of 88.9%. Four patients were downstaged. Treating lobar hepatocellular carcinoma with ipsilateral portal vein thrombosis with yttrium-90 glass-microsphere radioembolization is safe and efficacious. Further clinical trials are warranted to confirm these results and to compare 90Y-microS with sorafenib, taking into account not only survival but also the possibility of secondary surgery for putative curative intention after downstaging. 1. Introduction Hepatocellular carcinoma (HCC) is a common cancer with an estimated annual incidence of 600,000 worldwide [1]. During the disease course, 40% of patients will develop portal vein tumor thrombosis (PVTT) [2, 3], a hallmark of advanced disease recognized as a poor prognosis factor by most classification systems: Barcelona Clinic Liver Cancer (BCLC) [4] and Cancer Liver Italian Program (CLIP) [5]. Patients with PVTT involving the portal trunk or main branch are considered to have advanced-stage disease (BCLC class C), independently of liver function or tumor size. Because of the risk of hepatic ischemia, the presence of PVTT complicates, or even contraindicates, locoregional treatments such as transarterial embolization/chemoembolization (TAE/TACE) designed to block arterial blood flow [6, 7]. For these patients with advanced-stage HCC, palliative systemic treatments may be proposed [8]: sorafenib is currently the gold standard, even if debated, allowing significant improvement in time to progression and survival [9]. Considering the arterial hypervascularization associated with PVTT [10] and the radiosensitivity of HCC [11], radioisotopes would be a logical therapeutic option. Recent retrospective analyses of single-center series have demonstrated an acceptable safety profile for new modalities of selective internal radiation therapy (SIRT) using radiolabeled glass microspheres, even in
References
[1]
D. M. Parkin, F. Bray, J. Ferlay, and P. Pisani, “Global cancer statistics, 2002,” CA Cancer Journal for Clinicians, vol. 55, no. 2, pp. 74–108, 2005.
[2]
M. Pirisi, C. Avellini, C. Fabris et al., “Portal vein thrombosis in hepatocellular carcinoma: age and sex distribution in an autopsy study,” Journal of Cancer Research and Clinical Oncology, vol. 124, no. 7, pp. 397–400, 1998.
[3]
P. Tandon and G. Garcia-Tsao, “Prognostic indicators in hepatocellular carcinoma: a systematic review of 72 studies,” Liver International, vol. 29, no. 4, pp. 502–510, 2009.
[4]
J. M. Llovet, C. Brú, and J. Bruix, “Prognosis of hepatocellular carcinoma: the BCLC staging classification,” Seminars in Liver Disease, vol. 19, no. 3, pp. 329–338, 1999.
[5]
F. Perrone, “Prospective validation of the CLIP score: a new prognostic system for patients with cirrhosis and hepatocellular carcinoma. The Cancer of the Liver Italian Program (CLIP) Investigators,” Hepatology, vol. 31, no. 4, pp. 840–845, 2000.
[6]
J. L. Raoul, B. Sangro, A. Forner et al., “Evolving strategies for the management of intermediate-stage hepatocellular carcinoma: available evidence and expert opinion on the use of transarterial chemoembolization,” Cancer Treatment Reviews, vol. 37, no. 3, pp. 212–220, 2011.
[7]
Z. Sun, G. Li, X. Ai et al., “Hepatic and biliary damage after transarterial chemoembolization for malignant hepatic tumors: incidence, diagnosis, treatment, outcome and mechanism,” Critical Reviews in Oncology/Hematology, vol. 79, no. 2, pp. 164–174, 2011.
[8]
J. M. Llovet, J. Bustamante, A. Castells et al., “Natural history of untreated nonsurgical hepatocellular carcinoma: rationale for the design and evaluation of therapeutic trials,” Hepatology, vol. 29, no. 1, pp. 62–67, 1999.
[9]
J. M. Llovet, S. Ricci, V. Mazzaferro et al., “Sorafenib in advanced hepatocellular carcinoma,” The New England Journal of Medicine, vol. 359, no. 4, pp. 378–390, 2008.
[10]
P. Sorrentino, L. Tarantino, S. D'Angelo et al., “Validation of an extension of the international non-invasive criteria for the diagnosis of hepatocellular carcinoma to the characterization of macroscopic portal vein thrombosis,” Journal of Gastroenterology and Hepatology, vol. 26, no. 4, pp. 669–677, 2011.
[11]
J. L. Raoul, D. Guyader, J. F. Bretagne et al., “Randomized controlled trial for hepatocellular carcinoma with portal vein thrombosis: intra-arterial iodine-131-iodized oil versus medical support,” Journal of Nuclear Medicine, vol. 35, no. 11, pp. 1782–1787, 1994.
[12]
P. Hilgard, M. Hamami, A. E. Fouly et al., “Radioembolization with yttrium-90 glass microspheres in hepatocellular carcinoma: european experience on safety and long-term survival,” Hepatology, vol. 52, no. 5, pp. 1741–1749, 2010.
[13]
M. I?arrairaegui, K. G. Thurston, J. I. Bilbao et al., “Radioembolization with use of yttrium-90 resin microspheres in patients with hepatocellular carcinoma and portal vein thrombosis,” Journal of Vascular and Interventional Radiology, vol. 21, no. 8, pp. 1205–1212, 2010.
[14]
L. M. Kulik, B. I. Carr, M. F. Mulcahy et al., “Safety and efficacy of 90Y radiotherapy for hepatocellular carcinoma with and without portal vein thrombosis,” Hepatology, vol. 47, no. 1, pp. 71–81, 2008.
[15]
R. Salem, R. Lewandowski, C. Roberts et al., “Use of Yttrium-90 glass microspheres (therasphere) for the treatment of unresectable hepatocellular carcinoma in patients with portal vein thrombosis,” Journal of Vascular and Interventional Radiology, vol. 15, no. 4, pp. 335–345, 2004.
[16]
R. Salem, R. J. Lewandowski, M. F. Mulcahy et al., “Radioembolization for hepatocellular carcinoma using Yttrium-90 microspheres: a comprehensive report of long-term outcomes,” Gastroenterology, vol. 138, no. 1, pp. 52–64, 2010.
[17]
A. L. Tsai, C. T. Burke, A. S. Kennedy et al., “Use of Yttrium-90 microspheres in patients with advanced hepatocellular carcinoma and portal vein thrombosis,” Journal of Vascular and Interventional Radiology, vol. 21, no. 9, pp. 1377–1384, 2010.
[18]
C. E. Woodall, C. R. Scoggins, S. F. Ellis et al., “Is selective internal radioembolization safe and effective for patients with inoperable hepatocellular carcinoma and venous thrombosis?” Journal of the American College of Surgeons, vol. 208, no. 3, pp. 375–382, 2009.
[19]
J. Bruix, M. Sherman, J. M. Llovet et al., “Clinical management of hepatocellular carcinoma: conclusions of the barcelona-2000 EASL conference,” Journal of Hepatology, vol. 35, no. 3, pp. 421–430, 2001.
[20]
M. E. Hamami, T. D. Poeppel, S. Müller et al., “SPECT/CT with99mTc-MAA in radioembolization with90Y microspheres in patients with hepatocellular cancer,” Journal of Nuclear Medicine, vol. 50, no. 5, pp. 688–692, 2009.
[21]
R. Salem and K. G. Thurston, “Radioembolization with 90yttrium microspheres: a state-of-the-art brachytherapy treatment for primary and secondary liver malignancies: part 2: special topics,” Journal of Vascular and Interventional Radiology, vol. 17, no. 9, pp. 1425–1439, 2006.
[22]
S. Ho, W. Y. Lau, T. W. T. Leung et al., “Partition model for estimating radiation doses from yttrium-90 microspheres in treating hepatic tumours,” European Journal of Nuclear Medicine, vol. 23, no. 8, pp. 947–952, 1996.
[23]
A. Trotti, A. D. Colevas, A. Setser et al., “CTCAE v3.0: development of a comprehensive grading system for the adverse effects of cancer treatment,” Seminars in Radiation Oncology, vol. 13, no. 3, pp. 176–181, 2003.
[24]
B. Sangro, L. Carpanese, R. Cianni, et al., “Survival after yttrium‐90 resin microsphere radioembolization of hepatocellular carcinoma across Barcelona clinic liver cancer stages: a European evaluation,” Hepatology, vol. 54, no. 3, pp. 868–878, 2011.
[25]
V. Mazzaferro, C. Sposito, S. Bhoori et al., “Yttrium(90) radioembolization for intermediate-advanced hepatocarcinoma: a phase II study,” Hepatology. In Press.
[26]
J. Bruix, A. Cheng, Y. Kang et al., “Effect of macroscopic vascular invasion (MVI), extrahepatic spread (EHS), and ECOG performance status (ECOG PS) on outcome in patients with advanced hepatocellular carcinoma (HCC) treated with sorafenib: analysis of two phase III, randomized, double-blind trials,” Journal of Clinical Oncology, vol. 15, Supplement, abstract 4580, 2011.
[27]
J. L. Raoul, E. Boucher, Y. Rolland, and E. Garin, “Treatment of hepatocellular carcinoma with intra-arterial injection of radionuclides,” Nature Reviews Gastroenterology and Hepatology, vol. 7, no. 1, pp. 41–49, 2010.
[28]
R. Salem, R. J. Lewandowski, L. Kulik et al., “Radioembolization results in longer time-to-progression and reduced toxicity compared with chemoembolization in patients with hepatocellular carcinoma,” Gastroenterology, vol. 140, no. 2, pp. 497–507, 2011.
[29]
S. M. Ibrahim, R. J. Lewandowski, K. T. Sato et al., “Radioembolization for the treatment of unresectable hepatocellular carcinoma: a clinical review,” World Journal of Gastroenterology, vol. 14, no. 11, pp. 1664–1669, 2008.
[30]
R. Lencioni and J. M. Llovet, “Modified recist (mRECIST) assessment for hepatocellular carcinoma,” Seminars in Liver Disease, vol. 30, no. 1, pp. 52–60, 2010.
[31]
E. Garin, L. Lenoir, Y. Rolland, et al., “Dosimetry based on 99mTc-macroaggregated albumin SPECT/CT accurately predicts tumor response and survival in hepatocellular carcinoma patients treated with 90Y-loaded glass microspheres: preliminary results,” Journal of Nuclear Medicine, vol. 52, no. 2, pp. 255–263, 2012.
[32]
C. Chiesa, M. Maccauro, R. Romito et al., “Need, feasibility and convenience of dosimetric treatment planning in liver selective internal radiation therapy with (90)Y microspheres: the experience of the National Cancer Institute of Milan,” Quarterly Journal of Nuclear Medicine and Molecular Imaging, vol. 55, no. 2, pp. 168–197, 2011.
[33]
R. D. Timmerman, C. S. Bizekis, H. I. Pass et al., “Local surgical, ablative, and radiation treatment of metastases,” CA Cancer Journal for Clinicians, vol. 59, no. 3, pp. 145–170, 2009.