全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Value and Limits of Routine Histology Alone or Combined with Glutamine Synthetase Immunostaining in the Diagnosis of Hepatocellular Adenoma Subtypes on Surgical Specimens

DOI: 10.1155/2013/417323

Full-Text   Cite this paper   Add to My Lib

Abstract:

Immunohistochemistry is a valid method to classify hepatocellular adenoma (HCA). The aim was to test the performance of routine histology combined to glutamine synthetase (GS) staining to identify the 2 major HCA subtypes: HNF1α inactivated (H-HCA) and inflammatory HCA (IHCA). 114 surgical cases, previously classified by immunohistochemistry, were analysed. Group A comprised 45 H-HCAs, 44 IHCAs, and 9 β-catenin-activated IHCAs (b-IHCA), and group B, 16 b-HCA and unclassified HCA (UHCA). Steatosis was the hallmark of H-HCA. IHCA and b-IHCA were mainly characterized by inflammation, thick arteries, and sinusoidal dilatation; b-IHCA could not be differentiated from IHCA by routine histology. Group B was identified by default. A control set (91 cases) was analyzed using routine and GS stainings (without knowing immunohistochemical results). Among the 45 H-HCAs and 27 IHCAs, 40 and 24 were correctly classified, respectively. Among the 10 b-IHCAs, 4 were identified as such using additional GS. Eight of the 9 HCAs that were neither H-HCA nor IHCA were correctly classified. Conclusion. Routine histology allows to diagnose >85% of the 2 major HCA subtypes. GS is essential to identify b-HCA. This study demonstrates that a “palliative” diagnostic approach can be proposed, when the panel of specific antibodies is not available. 1. Introduction Hepatocellular adenomas (HCAs) are rare benign tumors. Molecular data have brought new insight in the characterization of this disease. They allow the distinction of focal nodular hyperplasia (FNH) from HCA and the identification of 2 major HCA subtypes which represent more than 80% of all HCAs, namely, HNF1A-mutated HCA (H-HCA, 35–40%) [1], and inflammatory HCA (IHCA, 50–55%) [2]; 10% of IHCAs being also β-catenin mutated (b-IHCA). The remaining HCAs are the β-catenin-mutated HCA (b-HCA, 10%) [3] and the unclassified HCA (UHCA, which account for less than 10%). The immunohistochemical (IHC) classification of HCA subtypes was derived from the above-mentioned molecular characterization and showed a good correlation with the molecular data [2]. Using specific IHC markers, such as liver fatty acid-binding protein (LFAPB), C reactive protein (CRP) or serum amyloid A (SAA), glutamine synthetase (GS), and β-catenin, it is possible to identify all HCA subgroups with good confidence. Among these markers, GS is of major importance to identify patients at high risk of malignant transformation. Indeed, abnormal GS staining [4] is a strong argument to suggest β-catenin activation. Unfortunately, the rarity of these tumors in routine

References

[1]  O. Bluteau, E. Jeannot, P. Bioulac-Sage et al., “Bi-allelic inactivation of TCF1 in hepatic adenomas,” Nature Genetics, vol. 32, no. 2, pp. 312–315, 2002.
[2]  P. Bioulac-Sage, S. Rebouissou, C. Thomas et al., “Hepatocellular adenoma subtype classification using molecular markers and immunohistochemistry,” Hepatology, vol. 46, no. 3, pp. 740–748, 2007.
[3]  J. Zucman-Rossi, E. Jeannot, J. T. Van Nhieu et al., “Genotype-phenotype correlation in hepatocellular adenoma: new classification and relationship with HCC,” Hepatology, vol. 43, no. 3, pp. 515–524, 2006.
[4]  P. Bioulac-Sage, G. Cubel, C. Balabaud, and J. Zucman-Rossi, “Revisiting the pathology of resected benign hepatocellular nodules using new immunohistochemical markers,” Seminars in Liver Disease, vol. 31, no. 1, pp. 91–103, 2011.
[5]  P. Bioulac-Sage, C. Balabaud, and I. Wanless, “Focal nodular hyperplasia and hepatocellular adenoma,” in Tumors of the Digestive Tract, F. Bosman, F. Carneiro, R. Hruban, and N. D. Theise, Eds., pp. 198–204, World Health Organization; IARC, Lyon, France, 2nd edition, 2010.
[6]  P. Bioulac-Sage, H. Laumonier, and C. Balabaud, “Benign hepatocellular tumors,” in Practical Hepatic Pathology, R. Saxena, Ed., pp. 473–488, Elsevier Saunders, 2010.
[7]  J. H. Stoot, R. J. Coelen, M. C. De Jong, and C. H. Dejong, “Malignant transformation of hepatocellular adenomas into hepatocellular carcinomas: a systematic review including more than 1600 adenoma cases,” HPB (Oxford), vol. 12, no. 8, pp. 509–522, 2010.
[8]  O. Farges, N. Ferreira, S. Dokmak, J. Belghiti, P. Bedossa, and V. Paradis, “Changing trends in malignant transformation of hepatocellular adenoma,” Gut, vol. 60, no. 1, pp. 85–89, 2011.
[9]  P. Bioulac-Sage, H. Laumonier, G. Couchy et al., “Hepatocellular adenoma management and phenotypic classification: the Bordeaux experience,” Hepatology, vol. 50, no. 2, pp. 481–489, 2009.
[10]  S. Dokmak, V. Paradis, V. Vilgrain et al., “A single-center surgical experience of 122 patients with single and multiple hepatocellular adenomas,” Gastroenterology, vol. 137, no. 5, pp. 1698–1705, 2009.
[11]  M. Sasaki, N. Yoneda, S. Kitamura, et al., “Characterization of hepatocellular adenoma based on the phenotypic classification: the Kanazawa experience,” Hepatology Research, vol. 41, pp. 982–988, 2011.
[12]  S. M. van Aalten, J. Verheij, T. Terkivatan, R. S. Dwarkasing, R. A. de Man, and J. N. M. Ijzermans, “Validation of a liver adenoma classification system in a tertiary referral centre: implications for clinical practice,” Journal of Hepatology, vol. 55, no. 1, pp. 120–125, 2011.
[13]  M. Ronot, S. Bahrami, J. Calderaro et al., “Hepatocellular adenomas: accuracy of magnetic resonance imaging and liver biopsy in subtype classification,” Hepatology, vol. 53, no. 4, pp. 1182–1191, 2011.
[14]  H. Laumonier, P. Bioulac-Sage, C. Laurent, J. Zucman-Rossi, C. Balabaud, and H. Trillaud, “Hepatocellular adenomas: magnetic resonance imaging features as a function of molecular pathological classification,” Hepatology, vol. 48, no. 3, pp. 808–818, 2008.
[15]  S. M. van Aalten, M. G. Thomeer, T. Terkivatan, et al., “Hepatocellular adenomas: correlation of MR imaging findings with pathologic subtype classification,” Radiology, vol. 261, pp. 172–181, 2011.
[16]  A. F. Manichon, B. Bancel, M. Durieux-Millon, et al., “Hepatocellular adenoma: evaluation with contrast-enhanced ultrasound and MRI and correlation with pathologic and phenotypic classification in 26 lesions,” HPB Surgery, vol. 2012, Article ID 418745, 2012.
[17]  V. Paradis, A. Champault, M. Ronot et al., “Telangiectatic adenoma: an entity associated with increased body mass index and inflammation,” Hepatology, vol. 46, no. 1, pp. 140–146, 2007.
[18]  P. Bioulac-Sage, S. Taouji, L. Possenti, et al., “Hepatocellular adenoma subtypes : the impact of overweight and obesity,” Liver International, vol. 32, pp. 1217–1221, 2012.
[19]  P. Bioulac-Sage, G. Cubel, S. Taouji, J. Y. Scoazec, E. Leteurtre, V. Paradis, et al., “Immunohistochemical markers on needle biopsies are helpful for the diagnosis of focal nodular hyperplasia and hepatocellular adenoma subtypes,” American Journal of Surgical Pathology, vol. 36, pp. 1691–1699, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133