Under normal physiological conditions, the hepatocyte growth factor (HGF) and its receptor, the MET transmembrane tyrosine kinase (cMET), are involved in embryogenesis, morphogenesis, and wound healing. The HGF-cMET axis promotes cell survival, proliferation, migration, and invasion via modulation of epithelial-mesenchymal interactions. Hepatocellular cancer (HCC) is the third most common cause of worldwide cancer-related mortality; advanced disease is associated with a paucity of therapeutic options and a five-year survival rate of only 10%. Dysregulation of the HGF-cMET pathway is implicated in HCC carcinogenesis and progression through activation of multiple signaling pathways; therefore, cMET inhibition is a promising therapeutic strategy for HCC treatment. The authors review HGF-cMET structure and function in normal tissue and in HCC, cMET inhibition in HCC, and future strategies for biomarker identification. 1. Introduction Hepatocellular carcinoma (HCC) is the sixth most common malignancy worldwide and the third most common cause of global cancer related mortality [1, 2]. HCC burden disproportionately impacts developing countries and males; as of 2008, 85% of cases occurred in Africa and Asia, with worldwide male: female sex ratio of 2.4 [2]. Risk factors for the development of HCC include chronic liver inflammation from hepatitis B and C infection, autoimmune hepatitis, excessive alcohol use, nonalcoholic steatohepatitis, primary biliary cirrhosis, environmental carcinogens such as aflatoxin B, and genetic metabolic disease (such as hemochromatosis and alpha-1 antitrypsin deficiency). Prognostic and therapeutic options are dependent upon the severity of underlying liver disease, and median overall survival (OS) for metastatic or locally advanced disease is estimated at 5–8 months. HCC is relatively refractory to cytotoxic chemotherapy, likely due to overexpression of multidrug-resistant genes [3], protein products such as heat shock 70 [4] and P-glycoprotein [5], and p53 mutations. Presently, systemic therapeutic options in the locally advanced or metastatic setting are limited to sorafenib, an oral multikinase inhibitor targeting Raf kinase, vascular endothelial growth factor (VEGF), and platelet-derived growth factor (PDGF) receptor tyrosine kinase signaling. Although the transition from normal hepatocyte to HCC is not fully understood, hepatocarcinogenesis is a complex multistep process driven by accumulation of heterogeneous molecular alterations from initial hepatocyte injury to metastatic invasion. Inflammation results in hepatocyte
References
[1]
International Agency for Research on Cancer, “Cancer incidence and mortality worldwide in 2008 (GLOBOCAN),” http://globocan.iarc.fr/.
[2]
J. Ferlay, H. R. Shin, F. Bray, D. Forman, C. Mathers, and D. M. Parkin, “Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008,” International Journal of Cancer, vol. 127, no. 12, pp. 2893–2917, 2010.
[3]
X. Chenivesse, D. Franco, and C. Brechot, “MDR1 (multidrug resistance) gene expression in human primary liver cancer and cirrhosis,” Journal of Hepatology, vol. 18, no. 2, pp. 168–172, 1993.
[4]
L. X. Qin, Z. Y. Tang, Z. C. Ma et al., “P53 immunohistochemical scoring: an independent prognostic marker for patients after hepatocellular carcinoma resection,” World Journal of Gastroenterology, vol. 8, no. 3, pp. 459–463, 2002.
[5]
A. M. Hui, M. Sakamoto, Y. Kanai et al., “Inactivation of p16(INK4) in hepatocellular carcinoma,” Hepatology, vol. 24, no. 3, pp. 575–579, 1996.
[6]
K. Nakanishi, M. Sakamoto, S. Yamasaki, S. Todo, and S. Hirohashi, “Akt phosphorylation is a risk factor for early disease recurrence and poor prognosis in hepatocellular carcinoma,” Cancer, vol. 103, no. 2, pp. 307–312, 2005.
[7]
S. Whittaker, R. Marais, and A. X. Zhu, “The role of signaling pathways in the development and treatment of hepatocellular carcinoma,” Oncogene, vol. 29, no. 36, pp. 4989–5005, 2010.
[8]
T. Nakamura, K. Sakai, T. Nakamura, and K. Matsumoto, “Hepatocyte growth factor twenty years on: much more than a growth factor,” Journal of Gastroenterology and Hepatology, vol. 26, supplement 1, pp. 188–202, 2011.
[9]
M. Stoker, E. Gherardi, M. Perryman, and J. Gray, “Scatter factor is a fibroblast-derived modulator of epithelial cell mobility,” Nature, vol. 326, no. 6119, pp. 239–242, 1987.
[10]
R. Montesano, K. Matsumoto, T. Nakamura, and L. Orci, “Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor,” Cell, vol. 67, no. 5, pp. 901–908, 1991.
[11]
M. A. Nalesnik and G. K. Michalopoulos, “Growth factor pathways in development and progression of hepatocellular carcinoma,” Frontiers in Bioscience, vol. S4, no. 4, pp. 1487–1515, 2012.
[12]
J. Broten, G. Michalopoulos, B. Petersen, and J. Cruise, “Adrenergic stimulation of hepatocyte growth factor expression,” Biochemical and Biophysical Research Communications, vol. 262, no. 1, pp. 76–79, 1999.
[13]
L. J. Appleman, “MET signaling pathway: a rational target for cancer therapy,” Journal of Clinical Oncology, vol. 29, pp. 4837–4838, 2011.
[14]
T. Shimomura, J. Kondo, M. Ochiai et al., “Activation of the zymogen of hepatocyte growth factor activator by thrombin,” Journal of Biological Chemistry, vol. 268, no. 30, pp. 22927–22932, 1993.
[15]
D. P. Bottaro, J. S. Rubin, D. L. Faletto et al., “Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product,” Science, vol. 251, no. 4995, pp. 802–804, 1991.
[16]
P. Peschard and M. Park, “From Tpr-Met to Met, tumorigenesis and tubes,” Oncogene, vol. 26, no. 9, pp. 1276–1285, 2007.
[17]
W. D. Tolbert, J. Daugherty-Holtrop, E. Gherardi, G. Vande Woude, and H. E. Xu, “Structural basis for agonism and antagonism of hepatocyte growth factor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 30, pp. 13264–13269, 2010.
[18]
E. Gherardi, M. E. Youles, R. N. Miguel et al., “Functional map and domain structure of MET, the product of the c-met protooncogene and receptor for hepatocyte growth factor/scatter factor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 21, pp. 12039–12044, 2003.
[19]
K. Matsumoto, H. Kataoka, K. Date, and T. Nakamura, “Cooperative interaction between α- and β-chains of hepatocyte growth factor on c-Met receptor confers ligand-induced receptor tyrosine phosphorylation and multiple biological responses,” Journal of Biological Chemistry, vol. 273, no. 36, pp. 22913–22920, 1998.
[20]
W. D. Tolbert, J. Daugherty, C. Gao et al., “A mechanistic basis for converting a receptor tyrosine kinase agonist to an antagonist,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 37, pp. 14592–14597, 2007.
[21]
F. Cecchi, D. C. Rabe, and D. P. Bottaro, “Targeting the HGF/Met signaling pathway in cancer therapy,” Expert Opinion on Therapeutic Targets, vol. 16, pp. 553–572, 2012.
[22]
P. M. Comoglio and C. Boccaccio, “Scatter factors and invasive growth,” Seminars in Cancer Biology, vol. 11, no. 2, pp. 153–165, 2001.
[23]
S. Corso, P. M. Comoglio, and S. Giordano, “Cancer therapy: can the challenge be MET?” Trends in Molecular Medicine, vol. 11, no. 6, pp. 284–292, 2005.
[24]
Y. W. Zhang and G. F. Vande Woude, “HGF/SF-Met signaling in the control of branching morphogenesis and invasion,” Journal of Cellular Biochemistry, vol. 88, no. 2, pp. 408–417, 2003.
[25]
G. R. Blumenschein, G. B. Mills, and A. M. Gonzalez-Angulo, “Targeting the hepatocyte growth factor-cMET axis in cancer therapy,” Journal of Clinical Oncology, vol. 30, no. 26, pp. 3287–3296, 2012.
[26]
C. G. Huh, V. M. Factor, A. Sánchez, K. Uchida, E. A. Conner, and S. S. Thorgeirsson, “Hepatocyte growth factor/c-met signaling pathway is required for efficient liver regeneration and repair,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 13, pp. 4477–4482, 2004.
[27]
T. Nakamura, S. Mizuno, K. Matsumoto, Y. Sawa, H. Matsuda, and T. Nakamura, “Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF,” Journal of Clinical Investigation, vol. 106, no. 12, pp. 1511–1519, 2000.
[28]
J. Chmielowiec, M. Borowiak, M. Morkel et al., “c-Met is essential for wound healing in the skin,” Journal of Cell Biology, vol. 177, no. 1, pp. 151–162, 2007.
[29]
J.-H. Baek, C. Birchmeier, M. Zenke, and T. Hieronymus, “The HGF receptor/met tyrosine kinase is a key regulator of dendritic cell migration in skin immunity,” Journal of Immunology, vol. 189, no. 4, pp. 1699–1707, 2012.
[30]
Y. Uehara, O. Minowa, C. Mori et al., “Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor,” Nature, vol. 373, no. 6516, pp. 702–705, 1995.
[31]
K. I. Kosai, K. Matsumoto, S. Nagata, Y. Tsujimoto, and T. Nakamura, “Abrogation of Fas-induced fulminant hepatic failure in mice by hepatocyte growth factor,” Biochemical and Biophysical Research Communications, vol. 244, no. 3, pp. 683–690, 1998.
[32]
M. Borowiak, A. N. Garratt, T. Wüstefeld, M. Strehle, C. Trautwein, and C. Birchmeier, “Met provides essential signals for liver regeneration,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 29, pp. 10608–10613, 2004.
[33]
D. Tavian, G. De Petro, A. Benetti, N. Portolani, S. M. Giulini, and S. Barlati, “u-PA and c-MET mRNA expression is co-ordinately enhanced while hepatocyte growth factor mRNA is down-regulated in human hepatocellular carcinoma,” International Journal of Cancer, vol. 87, no. 5, pp. 644–649, 2000.
[34]
C. Birchmeier, W. Birchmeier, E. Gherardi, and G. F. Vande Woude, “Met, metastasis, motility and more,” Nature Reviews Molecular Cell Biology, vol. 4, no. 12, pp. 915–925, 2003.
[35]
E. Lengyel, D. Prechtel, J. H. Resau et al., “c-Met overexpression in node-positive breast cancer identifies patients with poor clinical outcome independent of Her2/neu,” International Journal of Cancer, vol. 113, no. 4, pp. 678–682, 2005.
[36]
G. A. Smolen, R. Sordella, B. Muir et al., “Amplification of MET may identify a subset of cancers with extreme sensitivity to the selective tyrosine kinase inhibitor PHA-665752,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 7, pp. 2316–2321, 2006.
[37]
A. Kiss, N. J. Wang, J. P. Xie, and S. S. Thorgeirsson, “Analysis of transforming growth factor (TGF)-α/epidermal growth factor receptor, hepatocyte growth factor/c-met, TGF-β receptor type II, and p53 expression in human hepatocellular carcinomas,” Clinical Cancer Research, vol. 3, no. 7, pp. 1059–1066, 1997.
[38]
L. Boix, J. L. Rosa, F. Ventura et al., “c-met mRNA overexpression in human hepatocellular carcinoma,” Hepatology, vol. 19, no. 1, pp. 88–91, 1994.
[39]
S. Osada, M. Kanematsu, H. Imai, and S. Goshima, “Clinical significance of Serum HGF and c-Met expression in tumor tissue for evaluation of properties and treatment of hepatocellular carcinoma,” Hepato-Gastroenterology, vol. 55, no. 82-83, pp. 544–549, 2008.
[40]
K. Suzuki, N. Hayashi, Y. Yamada et al., “Expression of the c-met protooncogene in human hepatocellular carcinoma,” Hepatology, vol. 20, no. 5, pp. 1231–1236, 1994.
[41]
T. Ueki, J. Fujimoto, T. Suzuki, H. Yamamoto, and E. Okamoto, “Expression of hepatocyte growth factor and its receptor c-met proto-oncogene in hepatocellular carcinoma,” Hepatology, vol. 25, no. 4, pp. 862–866, 1997.
[42]
J. I. Okano, G. Shiota, and H. Kawasaki, “Expression of hepatocyte growth factor (HGF) and HGF receptor (c-met) proteins in liver diseases: an immunohistochemical study,” Liver, vol. 19, no. 2, pp. 151–159, 1999.
[43]
M. Daveau, M. Scotte, A. Fran?ois et al., “Hepatocyte growth factor, transforming growth factor α, and their receptors as combined markers of prognosis in hepatocellular carcinoma,” Molecular Carcinogenesis, vol. 36, no. 3, pp. 130–141, 2003.
[44]
F. S. Wu, S. S. Zheng, L. J. Wu et al., “Study on the prognostic value of hepatocyte growth factor and c-met for patients with hepatocellular carcinoma,” Chinese Journal of Surgery, vol. 44, no. 9, pp. 603–608, 2006.
[45]
A. W. Ke, G. M. Shi, J. Zhou et al., “Role of overexpression of CD151 and/or c-Met in predicting prognosis of hepatocellular carcinoma,” Hepatology, vol. 49, no. 2, pp. 491–503, 2009.
[46]
Z. L. Wang, P. Liang, B. W. Dong, X. L. Yu, and D. J. Yu, “Prognostic factors and recurrence of small hepatocellular carcinoma after hepatic resection or microwave ablation: a retrospective study,” Journal of Gastrointestinal Surgery, vol. 12, no. 2, pp. 327–337, 2008.
[47]
P. Kaposi-Novak, J. S. Lee, L. Gòmez-Quiroz, C. Coulouarn, V. M. Factor, and S. S. Thorgeirsson, “Met-regulated expression signature defines a subset of human hepatocellular carcinomas with poor prognosis and aggressive phenotype,” Journal of Clinical Investigation, vol. 116, no. 6, pp. 1582–1595, 2006.
[48]
J. M. Llovet, C. E. A. Pe?a, C. D. Lathia, M. Shan, G. Meinhardt, and J. Bruix, “Plasma biomarkers as predictors of outcome in patients with advanced hepatocellular carcinoma,” Clinical Cancer Research, vol. 18, no. 8, pp. 2290–2300, 2012.
[49]
P. Vejchapipat, P. Tangkijvanich, A. Theamboonlers, V. Chongsrisawat, S. Chittmittrapap, and Y. Poovorawan, “Association between serum hepatocyte growth factor and survival in untreated hepatocellular carcinoma,” Journal of Gastroenterology, vol. 39, no. 12, pp. 1182–1188, 2004.
[50]
H. Yamagamim, M. Moriyama, H. Matsumura et al., “Serum concentrations of human hepatocyte growth factor is a useful indicator for predicting the occurrence of hepatocellular carcinomas in C-viral chronic liver diseases,” Cancer, vol. 95, no. 4, pp. 824–834, 2002.
[51]
Y. Liu, J. He, C. Li et al., “Identification and confirmation of biomarkers using an integrated platform for quantitative analysis of glycoproteins and their glycosylations,” Journal of Proteome Research, vol. 9, no. 2, pp. 798–805, 2010.
[52]
S. Costantini, F. Capone, E. Guerriero, P. Maio, G. Colonna, and G. Castello, “Serum cytokine levels as putative prognostic markers in the progression of chronic HCV hepatitis to cirrhosis,” European Cytokine Network, vol. 21, no. 4, pp. 251–256, 2010.
[53]
P. Moinzadeh, K. Breuhahn, H. Stützer, and P. Schirmacher, “Chromosome alterations in human hepatocellular carcinomas correlate with aetiology and histological grade—results of an explorative CGH meta-analysis,” British Journal of Cancer, vol. 92, no. 5, pp. 935–941, 2005.
[54]
W. S. Park, S. M. Dong, S. Y. Kim et al., “Somatic mutations in the kinase domain of the MET/hepatocyte growth factor receptor gene in childhood hepatocellular carcinomas,” Cancer Research, vol. 59, no. 2, pp. 307–310, 1999.
[55]
A. Guo, J. Villén, J. Kornhauser et al., “Signaling networks assembled by oncogenic EGFR and c-Met,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 2, pp. 692–697, 2008.
[56]
K. K. Velpula, V. R. Dasari, S. Asuthkar, B. Gorantla, and A. J. Tsung, “EGFR and c-Met cross talk in glioblastoma and its regulation by human cord blood stem cells,” Translational Oncology, vol. 5, no. 5, pp. 379–392, 2012.
[57]
K. L. Mueller, L. A. Hunter, S. P. Ethier, and J. L. Boerner, “Met and c-Src cooperate to compensate for loss of epidermal growth factor receptor kinase activity in breast cancer cells,” Cancer Research, vol. 68, no. 9, pp. 3314–3322, 2008.
[58]
X. Xin, S. Yang, G. Ingle et al., “Hepatocyte growth factor enhances vascular endothelial growth factor-induced angiogenesis in vitro and in vivo,” American Journal of Pathology, vol. 158, no. 3, pp. 1111–1120, 2001.
[59]
Y. W. Zhang, Y. Su, O. V. Volpert, and G. F. Vande Woude, “Hepatocyte growth factor/scatter factor mediates angiogenesis through positive VEGF and negative thrombospondin 1 regulation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 22, pp. 12718–12723, 2003.
[60]
Y. Yu and G. Merlino, “Constitutive c-Met signaling through a nonautocrine mechanism promotes metastasis in a transgenic transplantation model,” Cancer Research, vol. 62, no. 10, pp. 2951–2956, 2002.
[61]
A. M. L. Chan, J. S. Rubin, D. P. Bottaro, D. W. Hirschfield, M. Chedid, and S. A. Aaronson, “Identification of a competitive HGF antagonist encoded by an alternative transcript,” Science, vol. 254, no. 5036, pp. 1382–1385, 1991.
[62]
Y. Kishi, K. Kuba, T. Nakamura et al., “Systemic NK4 gene therapy inhibits tumor growth and metastasis of melanoma and lung carcinoma in syngeneic mouse tumor models,” Cancer Science, vol. 100, no. 7, pp. 1351–1358, 2009.
[63]
Y. Suzuki, K. Sakai, J. Ueki et al., “Inhibition of Met/HGF receptor and angiogenesis by NK4 leads to suppression of tumor growth and migration in malignant pleural mesothelioma,” International Journal of Cancer, vol. 127, no. 8, pp. 1948–1957, 2010.
[64]
K. Matsumoto and T. Nakamura, “NK4 gene therapy targeting HGF-MET and angiogenesis,” Frontiers in Bioscience, vol. 13, no. 5, pp. 1943–1951, 2008.
[65]
M. Mazzone, C. Basilico, S. Cavassa et al., “An uncleavable form of pro-scatter factor suppresses tumor growth and dissemination in mice,” Journal of Clinical Investigation, vol. 114, no. 10, pp. 1418–1432, 2004.
[66]
S. J. Stahl, P. T. Wingfield, J. D. Kaufman et al., “Functional and biophysical characterization of recombinant human hepatocyte growth factor isoforms produced in Escherichia coli,” Biochemical Journal, vol. 326, no. 3, pp. 763–772, 1997.
[67]
T. Otsuka, J. Jakubczak, W. Vieira et al., “Disassociation of Met-mediated biological responses in vivo: the natural hepatocyte growth factor/scatter factor splice variant NK2 antagonizes growth but facilitates metastasis,” Molecular and Cellular Biology, vol. 20, no. 6, pp. 2055–2065, 2000.
[68]
P. Michieli, M. Mazzone, C. Basilico et al., “Targeting the tumor and its microenvironment by a dual-function decoy Met receptor,” Cancer Cell, vol. 6, no. 1, pp. 61–73, 2004.
[69]
M. Kong-Beltran, J. Stamos, and D. Wickramasinghe, “The Sema domain of Met is necessary for receptor dimerization and activation,” Cancer Cell, vol. 6, no. 1, pp. 75–84, 2004.
[70]
J. Gao, Y. Inagaki, P. Song, X. Qu, N. Kokudo, and W. Tang, “Targeting c-Met as a promising strategy for the treatment of hepatocellular carcinoma,” Pharmacological Research, vol. 65, no. 1, pp. 23–30, 2012.
[71]
A. Chaudhuri, M.-H. Xie, B. Yang et al., “Distinct involvement of the Gab1 and Grb2 adaptor proteins in signal transduction by the related receptor tyrosine kinases RON and MET,” Journal of Biological Chemistry, vol. 286, no. 37, pp. 32762–32774, 2011.
[72]
A. Bardelli, P. Longati, D. Gramaglia, M. C. Stella, and P. M. Comoglio, “Gab1 coupling to the HGF/Met receptor multifunctional docking site requires binding of Grb2 and correlates with the transforming potential,” Oncogene, vol. 15, no. 25, pp. 3103–3111, 1997.
[73]
A. Giubellino, T. R. Burke, and D. P. Bottaro, “Grb2 signaling in cell motility and cancer,” Expert Opinion on Therapeutic Targets, vol. 12, no. 8, pp. 1021–1033, 2008.
[74]
A. Giubellino, Y. Gao, S. Lee et al., “Inhibition of tumor metastasis by a growth factor receptor bound protein 2 Src homology 2 domain-binding antagonist,” Cancer Research, vol. 67, no. 13, pp. 6012–6016, 2007.
[75]
N. Atabey, Y. Gao, Z. J. Yao et al., “Potent blockade of hepatocyte growth factor-stimulated cell motility, matrix invasion and branching morphogenesis by antagonists of Grb2 Src homology 2 domain interactions,” Journal of Biological Chemistry, vol. 276, no. 17, pp. 14308–14314, 2001.
[76]
D. Oh, S. Han, T. M. Kim, et al., “A phase I, open-label, nonrandomized trial of OPB-31121, a STAT3 inhibitor, in patients with advanced solid tumors,” Journal of Clinical Oncology, vol. 28, supplement, abstract e13056, 2010.
[77]
P. Zucali, A. Santoro, C. Rodriguez-Lope, et al., “Final results from ARQ 197–114: a phase 1b safety trial evaluating ARQ 197 in cirrhotic patients (pts) with hepatocellular carcinoma (HCC),” Journal of Clinical Oncology, vol. 28, supplement 15, abstract 4137, p. 334s, 2010.
[78]
L. Rimassa, C. Porta, I. Borbath, et al., “Tivantinib (ARQ 197) versus placebo in patients (Pts) with hepatocellular carcinoma (HCC) who failed one systemic therapy: results of a randomized controlled phase II trial (RCT),” Journal of Clinical Oncology, vol. 30, supplement, abstract 4006, 2012.
[79]
F. M. Yakes, J. Chen, J. Tan et al., “Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth,” Molecular Cancer Therapeutics, vol. 10, no. 12, pp. 2298–2308, 2011.
[80]
A. L. Cohn, R. K. Kelley, Y. Tasi-Shen, et al., “Activity of cabozantinib (XL 184) in hepatocellular carcinoma patients (pts): results from a phase II randomized discontinuation trial (RDT),” .Journal of Clinical Oncology, vol. 30, supplement 4, abstract 261, 2012.
[81]
V. Lu Kan, P. Chang Jeffrey, A. Parachoniak Christine et al., “VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex,” Cancer Cell, vol. 22, no. 1, pp. 21–35, 2012.
[82]
B. Sennino, T. Ishiguro-Oonuma, Y. Wei et al., “Suppression of tumor invasion and metastasis by concurrent inhibition of c-Met and VEGF signaling in pancreatic neuroendocrine tumors,” Cancer Discovery, vol. 2, no. 3, pp. 270–287, 2012.
[83]
R. E. Martell, I. Puzanov, W. W. Ma, et al., “Safety and efficacy of MET inhibitor tivantinib (ARQ 197) combined with sorafenib in patients (pts) with hepatocellular carcinoma (HCC) from a phase I study,” Journal of Clinical Oncology, vol. 30, supplement, abstract 4117, 2012.
[84]
M. L. Peach, N. Tan, S. J. Choyke et al., “Directed discovery of agents targeting the met tyrosine kinase domain by virtual screening,” Journal of Medicinal Chemistry, vol. 52, no. 4, pp. 943–951, 2009.
[85]
S. F. Bellon, P. Kaplan-Lefko, Y. Yang et al., “c-Met inhibitors with novel binding mode show activity against several hereditary papillary renal cell carcinoma-related mutations,” Journal of Biological Chemistry, vol. 283, no. 5, pp. 2675–2683, 2008.
[86]
S. Berthou, D. M. Aebersold, L. S. Schmidt et al., “The Met kinase inhibitor SU11274 exhibits a selective inhibition pattern toward different receptor mutated variants,” Oncogene, vol. 23, no. 31, pp. 5387–5393, 2004.
[87]
L. V. Sequist, J. Von Pawel, E. G. Garmey et al., “Randomized phase II study of erlotinib plus tivantinib versus erlotinib plus placebo in previously treated non-small-cell lung cancer,” Journal of Clinical Oncology, vol. 29, no. 24, pp. 3307–3315, 2011.
[88]
S. Yamazaki, J. Skaptason, D. Romero et al., “Pharmacokinetic-pharmacodynamic modeling of biomarker response and tumor growth inhibition to an orally available cMet kinase inhibitor in human tumor xenograft mouse models,” Drug Metabolism and Disposition, vol. 36, no. 7, pp. 1267–1274, 2008.
[89]
D. Torti, F. Sassi, F. Galimi et al., “A preclinical algorithm of soluble surrogate biomarkers that correlate with therapeutic inhibition of the MET oncogene in gastric tumors,” International Journal of Cancer, vol. 130, no. 6, pp. 1357–1366, 2011.
[90]
R. Kurzrock, S. I. Sherman, D. W. Ball et al., “Activity of XL184 (cabozantinib), an oral tyrosine kinase inhibitor, in patients with medullary thyroid cancer,” Journal of Clinical Oncology, vol. 29, no. 19, pp. 2660–2666, 2011.
[91]
R. Srinivasan, T. K. Choueiri, U. Vaishampayan, et al., “A phase II study of the dual MET/VEGFR2 inhibitor XL880 in patients (ps) with papillary renal carcinma (PRC),” Journal of Clinical Oncology, vol. 26, supplement 15, abstract 5103, p. 275s, 2008.
[92]
E. M. Kim, E. H. Park, S. J. Cheong et al., “In vivo imaging of mesenchymal-epithelial transition factor (c-Met) expression using an optical imaging system,” Bioconjugate Chemistry, vol. 20, no. 7, pp. 1299–1306, 2009.
[93]
C. Wu, Z. Tang, W. Fan et al., “In vivo positron emission tomography (PET) imaging of mesenchymal-epithelial transition (MET) receptor,” Journal of Medicinal Chemistry, vol. 53, no. 1, pp. 139–146, 2010.