The formation of sinkholes along the Dead Sea is caused by the rapid decline of the Dead Sea level, as a possible result of human extensive activity. According to one of the geological models, the sinkholes in several sites are clustered along a narrow coastal strip developing along lineaments representing faults in NNW direction. In order to understand the relationship between a developing sinkhole and its tectonic environment, a high-resolution (HR) three-dimensional (3D) seismic reflection survey was carried out at the western shoreline of the Dead Sea. A recently developed 3D imaging approach was applied to this 3D dataset. Imaging of subsurface is performed by a spatial summation of seismic waves along time surfaces using recently proposed multipath summation with proper weights. The multipath summation is performed by stacking the target waves along all possible time surfaces having a common apex at the given point. This approach does not require any explicit information on parameters since the involved multipath summation is performed for all possible parameters values within a wide specified range. The results from processed 3D time volume show subhorizontal coherent reflectors at approximate depth of 50–80?m which incline on closer location to the exposed sinkhole and suggest a possible linkage between revealed fault and the sinkholes. 1. Introduction During the last thirty years, hundreds of sinkholes have appeared along the Dead Sea (DS) shoreline in both Israel and Jordan (Figure 1) [1–3]. The process began in the southern part of the DS coast and slowly spread northward along the western coast. The eastern coast which is usually steeper has been less affected at the flat-lying region close to the Lisan Peninsula. The sinkholes have already caused considerable damage to infrastructure, and there is obvious potential for further collapses beneath main highways and other infrastructure. Figure 1: Sinkhole sites along the Dead Sea shore: ( 1) Palms, ( 2) Samar Spring, (3) Mineral Beach, (4) Ein Gedi and Nahal Arugot, (5) Yesha, (6) Zeruya, (7) Nahal Hever northern, (8) Nahal Hever southern, (9) Asa’el, (10) Nahal Zeelim, (11) Mezada, (12) Rahaf, (13) Mor, (14) Ein Boqeq, (15) Newe Zohar, (16) Lisan Peninsula, (17) Ghor Al-Haditha, (18) Dam-2. I–III: sites under investigation. (coordinates are in km, new Israel Mercator grid). In order to understand the relationship between a developing sinkhole and its tectonic environment, a numerous number of high resolution seismic reflection surveys were carried out using common midpoint (CMP) technique [3,
References
[1]
Y. Arkin and A. Gilat, “Dead Sea sinkholes: an ever-developing hazard,” Environmental Geology, vol. 39, no. 7, pp. 711–722, 2000.
[2]
A. Frumkin and E. Raz, “Collapse and subsidence associated with salt karstification along the Dead Sea,” Carbonates and Evaporites, vol. 16, no. 2, pp. 117–130, 2001.
[3]
Y. Yechieli, M. Abelson, A. Bein, O. Crouvi, and V. Shtivelman, “Sinkhole “swarms” along the Dead Sea cost: reflection of disturbance of lake and adjacent groundwater systems,” Bulletin of the Geological Society of America, vol. 118, no. 9-10, pp. 1075–1087, 2006.
[4]
Z. Ben-Avraham, “Geophysical framework of the Dead Sea: structure and Tectonics,” in The Dead Sea: the Lake and Its Setting, T. M. Niemi, Z. Ben-Avraham, and J. Gat, Eds., pp. 22–35, Oxford University Press, Oxford, UK, 1997.
[5]
M. Abelson, G. Baer, V. Shtivelman et al., “Collapse-sinkholes and radar interferometry reveal neotectonics concealed within the Dead Sea basin,” Geophysical Research Letters, vol. 30, no. 10, pp. 52–1, 2003.
[6]
M. Abelson, Y. Yechieli, O. Crouvi et al., “Evolution of the Dead Sea sinkholes,” Special Paper of the Geological Society of America, no. 401, pp. 241–253, 2006.
[7]
S. Keydar, B. Medvedev, M. Ezerky, and L. Sobolevsky, “Imaging shallow subsurface of Dead Sea area by Common Shot Point stacking and diffraction method using weighted multipath summation,” Journal of Civil Engineering and Science, vol. 1, no. 2, pp. 75–79, 2012.
[8]
S. Keydar, L. Bodet, C. Camerlynck et al., “A new approach for shallow subsurface imaging and its application to the Dead Sea sinkhole problem,” in Proceedings of the 73rd EAGE Conference and Exhibition, pp. 1–4, Vienna, Austria, April 2011.
[9]
S. Keydar, B. Medvedev, A. Al-Zoubi, and M. Ezersky, “Another look of imaging of shallow subsurface: real examples from the Dead Sea sinkhole development areas,” in EGU General Assembly, vol. 14 of Geophysical Research Abstracts, vol. 14, p. 1432, Vienna, Austria, April 2012.
[10]
S. Keydar, “Homeomorphic imaging using path integrals,” in Proceedings of the 66th EAGE Conference & Exhibition, pp. 7–10, Paris, France, June 2004.
[11]
S. Keydar and M. Mikenberg, “Prestack time migration using the Kirchhoff sum along a new approximation of the reflection travel time curve,” in Proceedings of the 72nd European Association of Geoscientists and Engineers Conference and Exhibition (EUROPEC '10), pp. 4916–4920, Barcelona, Spain, June 2010.
[12]
S. Keydar and M. Mikenberg, “A new time correction formula in three-dimensional media as a function of wavefront attributes,” Journal of Seismic Exploration, vol. 17, no. 4, pp. 349–369, 2008.
[13]
S. Keydar and V. Shtivelman, “Imaging zero-offset sections using multipath summation,” First Break, vol. 23, pp. 21–24, 2005.
[14]
E. Landa, S. Fomel, and T. J. Moser, “Path-integral seismic imaging,” Geophysical Prospecting, vol. 54, no. 5, pp. 491–503, 2006.
[15]
J. Schleicher and J. C. Costa, “Migration velocity analysis by double path-integral migration,” Geophysics, vol. 74, no. 6, pp. WCA225–WCA231, 2009.
[16]
V. Shtivelman, S. Keydar, and M. Mikenberg, “Imaging near-surface inhomogeneities using weighted multipath summation,” Near Surface Geophysics, vol. 7, no. 3, pp. 171–177, 2009.
[17]
A. Al-Zoubi and U. S. Ten Brink, “Salt diapirs in the Dead Sea basin and their relationship to Quaternary extensional tectonics,” Marine and Petroleum Geology, vol. 18, no. 7, pp. 779–797, 2001.
[18]
A. Frumkin, M. Ezersky, A. Al-Zoubi, E. Akkawi, and A.-R. Abueladas, “The Dead Sea hazard: geophysical assessment of salt dissolution and collapse,” Geomorphology, vol. 134, pp. 102–117, 2011.