This paper presents use of semiempirical method for seismic hazard zonation. The seismotectonically important region of Uttarakhand Himalaya has been considered in this work. Ruptures along the lineaments in the area identified from tectonic map are modeled deterministically using semi empirical approach given by Midorikawa (1993). This approach makes use of attenuation relation of peak ground acceleration for simulating strong ground motion at any site. Strong motion data collected over a span of three years in this region have been used to develop attenuation relation of peak ground acceleration of limited magnitude and distance applicability. The developed attenuation relation is used in the semi empirical method to predict peak ground acceleration from the modeled rupture planes in the area. A set of values of peak ground acceleration from possible ruptures in the area at the point of investigation is further used to compute probability of exceedance of peak ground acceleration of values 100 and 200 gals. The prepared map shows that regions like Tehri, Chamoli, Almora, Srinagar, Devprayag, Bageshwar, and Pauri fall in a zone of 10% probability of exceedence of peak ground acceleration of value 200 gals. 1. Introduction Estimation of seismic hazard is an important task for planners, engineers, and scientists. Peak ground acceleration serves as a basic tool for preparation of seismic hazard map in a tectonically active area. Attenuation relations are commonly used for computing peak ground acceleration at any site. Although attenuation relationship provides a good estimate of peak ground acceleration, these relations are mainly controlled by the data used for its derivation. With the advancement of seismology several techniques are used to simulate various strong motion parameters. These techniques are (i) stochastic simulation technique [1], (ii) empirical Green’s Function technique (EGF) [2, 3], (iii) composite fault modeling technique [4], and (iv) semi empirical technique [5]. Recently semi empirical technique has been used for simulating earthquake ground motion due to a buried rectangular rupture plane [5–13]. One of the advantages of this method is its use of attenuation relation of limited magnitude range for forecasting large earthquake. Seismic hazard in an area can be estimated by either the probabilistic seismic hazard assessment approach (PSHA) or the deterministic seismic hazard assessment approach (DSHA) [14]. Both approaches use the same datasets, which include earthquake sources, occurrence frequencies, and ground motion attenuation
References
[1]
G. W. Housner and P. C. Jennings, “Generation of artificial earthquakes,” Proceeding of the American Society of Civil Engineers, vol. 90, pp. 113–150, 1964.
[2]
S. H. Hartzell, “Earthquake aftershocks as green functions,” Geophysical Research Letters, vol. 5, pp. 1–4, 1978.
[3]
S. H. Hartzell, “Simulation of ground accelerations for May 1980 Mammoth Lakes, California earthquakes,” Bulletin of the Seismological Society of America, vol. 72, pp. 2381–2387, 1982.
[4]
Yuehua Zeng, J. G. Anderson, and G. Yu, “A composite source model for computing realistic synthetic strong ground motions,” Geophysical Research Letters, vol. 21, no. 8, pp. 725–728, 1994.
[5]
S. Midorikawa, “Semi-empirical estimation of peak ground acceleration from large earthquakes,” Tectonophysics, vol. 218, no. 1–3, pp. 287–295, 1993.
[6]
A. Joshi, “Modeling of peak ground acceleration for Uttarkashi earthquake of 20th October, 1991,” Bulletin of the Indian Society of Earthquake Technology, vol. 34, pp. 75–96, 1997.
[7]
A. Joshi, “Modelling of rupture planes for peak ground accelerations and its application to the isoseismal map of MMI scale in Indian region,” Journal of Seismology, vol. 4, no. 2, pp. 143–160, 2000.
[8]
A. Joshi, “Strong motion envelope modelling of the source of the Chamoli earthquake of March 28, 1999 in the Garhwal Himalaya, India,” Journal of Seismology, vol. 5, no. 4, pp. 499–518, 2001.
[9]
A. Joshi, “Predicting strong motion parameters for the Chamoli earthquake of 28th March, 1999, Garhwal Himalaya, India, from simplified finite fault model,” Journal of Seismology, vol. 7, no. 1, pp. 1–17, 2003.
[10]
A. Joshi, “A simplified technique for simulating wide-band strong ground motion for two recent Himalayan earthquakes,” Pure and Applied Geophysics, vol. 161, no. 8, pp. 1777–1805, 2004.
[11]
A. Joshi and S. Midorikawa, “A simplified method for simulation of strong ground motion using finite rupture model of the earthquake source,” Journal of Seismology, vol. 8, no. 4, pp. 467–484, 2004.
[12]
A. Joshi and S. Midorikawa, “Attenuation characteristics of ground motion intensity from earthquakes with intermediate depth,” Journal of Seismology, vol. 9, no. 1, pp. 23–37, 2005.
[13]
D. Kumar, S. S. Teotia, and K. N. Khattri, “The representability of attenuation characteristics of strong ground motions observed in the 1986 Dharmsala and 1991 Uttarkashi earthquakes by available empirical relations,” Current Science, vol. 73, no. 6, pp. 543–548, 1997.
[14]
C. F. Reihter, Earthquake Hazard Analysis-Issues and Insights, Columbia University Press, New York, NY, USA, 1990.
[15]
K. N. Khattri, “Great earthquakes, seismicity gaps and potential for earthquake disaster along the Himalaya plate boundary,” Tectonophysics, vol. 138, no. 1, pp. 79–92, 1987.
[16]
S. C. Bhatia, M. R. Kumar, and H. K. Gupta, “A probabilistic seismic hazard map of India and adjoining regions,” Annali di Geofisica, vol. 42, no. 6, pp. 1153–1164, 1999.
[17]
A. Joshi and R. C. Patel, “Modelling of active lineaments for predicting a possible earthquake scenario around Dehradun, Garhwal Himalaya, India,” Tectonophysics, vol. 283, no. 1–4, pp. 289–310, 1997.
[18]
A. Joshi, K. Mohan, and R. C. Patel, “A deterministic approach for preparation of seismic hazard maps in North East India,” Natural Hazards, vol. 43, no. 1, pp. 129–146, 2007.
[19]
A. Joshi and K. Mohan, “Expected peak ground acceleration in Uttarakhand Himalaya, India region from a deterministic hazard model,” Natural Hazards, vol. 52, no. 2, pp. 299–317, 2010.
[20]
N. A. Abrahamson and J. J. Litehiser, “Attenuation of vertical peak acceleration,” Bulletin, vol. 79, no. 3, pp. 549–580, 1989.
[21]
A. Joshi, A. Kumar, C. Lomnitz, H. Castanos, and S. Akhtar, “Applicability of attenuation relations for regional studies,” Geofísica Internacional, vol. 51–4, pp. 349–363, 2012.
[22]
S. Dasgupta, P. Pande, D. Ganguly et al., “Seismotectonic atlas of India and its environs,” in Geological Survey of India, P. L. Narula, S. K. Achryya, and J. Banerjee, Eds., 2000.
[23]
K. Levenberg, “A method for the solution of certain non-linear problems in least squares,” Quarterly of Applied Mathematics, vol. 2, pp. 164–168, 1944.
[24]
V. P. Dimri, Deconvolution and Inverse Theory: Application to Geophysical Problems, Elsevier Science, Amsterdam, The Netherlands, 1992.
[25]
A. Joshi, “Use of acceleration spectra for determining the frequency-dependent attenuation coefficient and source parameters,” Bulletin of the Seismological Society of America, vol. 96, no. 6, pp. 2165–2180, 2006.
[26]
H. Kameda and M. Sugito, “Prediction of strong earthquake motions by evolutionary process model,” in Proceedings of the 6th Japan Earthquake Engineering Symposium, pp. 41–48, 1978.
[27]
A. Joshi, S. Singh, and G. Kavita, “The simulation of ground motion using envelope summation,” Pure Applied Geophysics, vol. 158, pp. 877–901, 2001.
[28]
D. M. Boore, “Stochastic simulation of high frequency ground motion based on seismological models of radiated spectra,” Bulletin of the Seismological Society of America, vol. 73, pp. 1865–1894, 1983.
[29]
K. Irikura, “Prediction of strong acceleration motion using empirical green's function,” in Proceedings of the 7th Japan Earthquake Engineering Symposium, pp. 151–156, 1986.
[30]
D. L. Wells and K. J. Coppersmith, “New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement,” Bulletin, vol. 84, no. 4, pp. 974–1002, 1994.
[31]
H. Kanamori and D. L. Anderson, “Theoretical basis of some empirical relation in seismology,” Bulletin of the Seismological Society of America, vol. 65, pp. 1073–1095, 1975.
[32]
G. Yu, K. N. Khattri, J. G. Anderson, J. N. Brune, and Y. Zeng, “Strong ground motion from the Uttarkashi, Himalaya, India, earthquake: comparison of observations with synthetics using the composite source model,” Bulletin, vol. 85, no. 1, pp. 31–50, 1995.