The geomagnetic deep sounding (GDS) method is one of electromagnetic (EM) methods in geophysics that allows the estimation of the subsurface electrical conductivity distribution. This paper presents the inversion modeling of GDS data employing Markov Chain Monte Carlo (MCMC) algorithm to evaluate the marginal posterior probability of the model parameters. We used thin-sheet model to represent quasi-3D conductivity variations in the heterogeneous subsurface. The algorithm was applied to invert field GDS data from the zone covering an area that spans from eastern margin of the Bohemian Massif to the West Carpathians in Europe. Conductivity anomalies obtained from this study confirm the well-known large-scale tectonic setting of the area. 1. Introduction In geomagnetic deep sounding (GDS), we measure the natural Earth’s magnetic transient variations to infer large-scale subsurface conductivity distribution. Recent advances in magnetotelluric (MT) technique tend to put the attention to move towards local scale investigation of conductivity anomalies with more economic interests as in exploration for mineral, geothermal, or hydrocarbon. However, GDS is still considered as the most appropriate natural source electromagnetic (EM) method capable of imaging the Earth’s interior especially for tectonic study at the regional and continental scales (e.g., [1, 2]). This paper describes the inversion modeling technique for GDS data in terms of conductivity distribution by using the Markov Chain Monte Carlo (MCMC) algorithm. The MCMC inversion algorithm has been applied for 1D modeling of MT [3, 4], vertical electrical sounding (VES) [5] and also controlled-source audio-frequency MT (CSAMT) [6] with satisfactory results. In the so-called thin-sheet modeling, the conductivity variations are assumed to be confined in a thin layer such that the model parameters are integrated conductivity over the thickness of the thin layer. This simplification suits well for modeling GDS data that are mostly sensitive to lateral variation of conductivity [7, 8]. We will first briefly review the concept and the formulation of the thin-sheet modeling and then describe the MCMC inversion algorithm. The result of inversion of real GDS data from Bohemian Massif-West Carpathians and also its interpretation will be discussed. 2. Thin-Sheet Electromagnetic Modeling In electromagnetic (EM) geophysics, the thin-sheet modeling refers to an approximation of 3D conductivity variation by a thin layer with variable conductance, that is, integrated conductivity over the thickness of the thin layer.
References
[1]
G. Vasseur and P. Weidelt, “Bimodal electromagnetic induction in non-uniform thinsheets with an application to the northern Pyrenean inductionanomaly,” Geophysical Journal of Royal Astronomical Society, vol. 51, no. 3, pp. 669–690, 1977.
[2]
J. Sun and G. D. Egbert, “A thin-sheet model for global electromagnetic induction,” Geophysical Journal International, vol. 189, no. 1, pp. 343–356, 2012.
[3]
H. Grandis, M. Menvielle, and M. Roussignol, “Bayesian inversion with Markov chains-I. The magnetotelluric one-dimensional case,” Geophysical Journal International, vol. 138, no. 3, pp. 757–768, 1999.
[4]
O. Praus, J. Pě?ová, V. ?erv, S. Ková?iková, J. Pek, and J. Velímsky, “Electrical conductivity at mid-mantle depths estimated from the data of Sq and long period geomagnetic variations,” Studia Geophysica et Geodaetica, vol. 55, no. 2, pp. 241–264, 2011.
[5]
J.-J. Schott, M. Roussignol, M. Menvielle, and F. R. Nomenjahanary, “Bayesian inversion with Markov chains-II. The one-dimensional DC multilayer case,” Geophysical Journal International, vol. 138, no. 3, pp. 769–783, 1999.
[6]
H. Grandis and P. Sumintadireja, “Quasi-2D resistivity model from inversion of CSAMT (Controlled-Source Audio-frequency Magneto-tellurics) data,” in Proceedings of the HAGI-IAGI Joint Convention Medan, 2013.
[7]
L. J. Wang and F. E. M. Lilley, “Inversion of magnetometer array data by thin-sheet modelling,” Geophysical Journal International, vol. 137, no. 1, pp. 128–138, 1999.
[8]
D. McA. Mckirdy, J. T. Weaver, and T. W. Dawson, “Induction in a thin sheet of variable conductance at the surface of a stratified earth—II. Three-dimensional theory,” Geophysical Journal—Royal Astronomical Society, vol. 80, no. 1, pp. 177–194, 1985.
[9]
H. Grandis, M. Menvielle, and M. Roussignol, “Thin-sheet electromagnetic inversion modeling using Monte Carlo Markov Chain (MCMC) algorithm,” Earth, Planets and Space, vol. 54, no. 5, pp. 511–521, 2002.
[10]
F. E. M. Lilley and B. R. Arora, “The sign convention for quadrature Parkinson arrows in geomagnetic induction studies,” Reviews of Geophysics & Space Physics, vol. 20, no. 3, pp. 513–518, 1982.
[11]
H. Grandis, Imagerie electromagnetique Bayesienne par la simulation d’une cha?ne de Markov [Ph.D. thesis], Sciences de la Terre et des Planètes, Université Paris 7, Paris, France, 1994.
[12]
D. W. Heerman, Computer Simulation Methods in Theoretical Physics, Springer, Berlin, Germany, 1990.
[13]
C. Robert, Méthodes de Monte Carlo par Cha?nes de Markov, Economica, Paris, France, 1996.
[14]
A. Dudek, “The principal features of the geological structure of Czecho-Slovakia with regard to adjacent regions,” in Geophysical Syntheses in Czecho-Slovakia, A. Zátopek, Ed., Veda, Bratislava, Slovakia, 1981.
[15]
S. Ková?iková, V. ?erv, and O. Praus, “Modelling of the conductance distribution at the eastern margin of the European Hercynides,” Studia Geophysica et Geodaetica, vol. 49, no. 3, pp. 403–421, 2005.
[16]
K. Pě?, J. Pě?ová, O. Praus, and M. Hvo?dara, “Single- and inter-station transfer functions for non-synchronous geomagnetic arrays—I. Theory of methods used in data analysis,” Studia Geophysica et Geodaetica, vol. 32, no. 3, pp. 300–312, 1988.
[17]
K. Pě?, J. Pě?ová, O. Praus, and M. Hvo?dara, “Single- and inter-station transfer functions for non-synchronous geomagnetic arrays-II. the results of the field data analysis,” Studia Geophysica et Geodaetica, vol. 32, no. 4, pp. 368–391, 1988.
[18]
V. Petr, J. Pě?ová, O. Praus, and K. Pě?, “Anomalous induction zone near the eastern margin of the Bohemian Massif,” Physics of the Earth and Planetary Interiors, vol. 45, no. 2, pp. 161–169, 1987.
[19]
A. ádám and A. Koppán, “Long period electromagnetic induction vectors in a sedimentary back-arc basin (Carpatho-Pannonian Basin),” Acta Geodaetica et Geophysica Hungarica, vol. 39, no. 4, pp. 363–379, 2004.
[20]
J. Jankowski, O. Praus, and W. Jó?wiak, “Carpathian anomaly of electrical conductivity: history of its discovery and interpretation,” Publications of the Institute of Geophysics-Polish Academy of Sciences, vol. 95, no. 386, pp. 17–27, 2005.
[21]
R. D. Hyndman, L. L. Vanyan, G. Marquis, and L. K. Law, “The origin of electrically conductive lower continental crust: saline water or graphite?” Physics of the Earth and Planetary Interiors, vol. 81, no. 1–4, pp. 325–345, 1993.