全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Three-Component Forward Modeling for Transient Electromagnetic Method

DOI: 10.1155/2010/791790

Full-Text   Cite this paper   Add to My Lib

Abstract:

In general, the time derivative of vertical magnetic field is considered only in the data interpretation of transient electromagnetic (TEM) method. However, to survey in the complex geology structures, this conventional technique has begun gradually to be unsatisfied with the demand of field exploration. To improve the integrated interpretation precision of TEM, it is necessary to study the three-component forward modeling and inversion. In this paper, a three-component forward algorithm for 2.5D TEM based on the independent electric and magnetic field has been developed. The main advantage of the new scheme is that it can reduce the size of the global system matrix to the utmost extent, that is to say, the present is only one fourth of the conventional algorithm. In order to illustrate the feasibility and usefulness of the present algorithm, several typical geoelectric models of the TEM responses produced by loop sources at air-earth interface are presented. The results of the numerical experiments show that the computation speed of the present scheme is increased obviously and three-component interpretation can get the most out of the collected data, from which we can easily analyze or interpret the space characteristic of the abnormity object more comprehensively. 1. Introduction The transient electromagnetic method has shown great potential in hydrological and hazardous waste site characterization [1, 2], mineral exploration [3], and general geological mapping, and geophysical reconnaissance. However, the behavior of TEM fields is not yet fully understood [4]. The need for further theoretical insight is reflected by the increasing demands placed on transient electromagnetic methods for petroleum, mineral, and geothermal exploration. Forward modeling is one of the most common and effective methods that help us understand the physical significance of the electromagnetic responses [5, 6]. Computer solutions for this method have been mainly confined to the vertical component of magnetic field time derivative. Until now, a limited number of solutions have appeared in the literatures which are relevant to the TEM three-component responses of a 3D source over 2D earth, which is the so-called 2.5D. At present the 2.5D model represents the only way of interpreting controlled source electromagnetic data in terms of a complex earth, due to the prohibitive amount of computer time and storage required for a complex 3D model [7]. The first published theoretical finite element derivation for the 2.5D electromagnetic problem was by Coggon [8]. Stoyer and Greenfield

References

[1]  G. A. Newman and M. Commer, “New advances in three dimensional transient electromagnetic inversion,” Geophysical Journal International, vol. 160, pp. 5–32, 2005.
[2]  L. Pellerin and D. L. Alumbaugh, “Tools for electromagnetic investigation of the shallow subsurface,” Leading Edge, vol. 16, pp. 1631–1640, 1997.
[3]  M. N. Nabighian and J. C. Macnae, “Time domain electromagnetic prospecting methods,” in Electromagnetic Methods in Applied Geophysics, M. N. Nabighian, Ed., vol. 2, pp. 427–520, Society for Exploration Geophysics, Tulsa, Okla, USA, 1991.
[4]  G. A. Newman, G. W. Hohmann, and W. L. Anderson, “Transient electromagnetic response of a Three-Dimensional body in a layered earth,” Geophysics, vol. 51, pp. 1608–1627, 1986.
[5]  J. S. Shen and W. B. Sun, “2.5-D modeling of cross-hole electromagnetic measurement by finite element method,” Petroleum Science, vol. 5, pp. 126–134, 2008.
[6]  J.-S. Shen and W.-B. Sun, “A study on the 2.5-D electromagnetic modeling by the finite element method and the wave number selection,” Computing Techniques for Geophysical and Geochemical Exploration, vol. 30, no. 2, pp. 135–144, 2008.
[7]  M. N. Nabighian, Electromagnetic Methods in Applied Geophysics, 1, Theory, Society of Exploration Geophysicists, Tulsa, Okla, USA, 1988.
[8]  J. H. Coggon, “Electromagnetic and electrical modeling by the finite element method,” Geophysics, vol. 36, pp. 132–155, 1971.
[9]  C. H. Stoyer and R. J. Greenfield, “Numerical solutions of the response of a two-dimensional earth to an oscillating magnetic dipole source,” Geophysics, vol. 41, pp. 519–530, 1976.
[10]  K. H. Lee, Electromagnetic scattering by a two-dimensional inhomogeneity due to an oscillating magnetic dipole source, Ph.D. thesis, University of California, Berkeley, Calif, USA, 1978.
[11]  K. H. Lee and H. F. Morrison, “A numerical solution for the eleccromagnetic scattering by a two- dimensional inhomogeneity,” Geophysics, vol. 50, pp. 1163–1165, 1985.
[12]  M. Leppin, “Electromagnetic modeling of 3-D sources over 2-D inhomogeneities in the time domain,” Geophysics, vol. 57, pp. 994–1003, 1992.
[13]  M. E. Everett and R. N. Edwards, “Transient marine electromagnetics: the 2.5-D forward problem,” Geophysical Journal International, vol. 113, pp. 545–561, 1993.
[14]  M. J. Unsworth, B. J. Travis, and A. D. Chave, “Electromagnetic induction by a finite electric dipole source over a 2-D earth,” Geophysics, vol. 58, pp. 198–214, 1993.
[15]  Y. Mitsuhata, “2-D electromagnetic modeling by finite-element method with a dipole source and topography,” Geophysics, vol. 65, pp. 465–475, 2000.
[16]  K. Key and C. J. Weiss, “Adaptive finite-element modeling using unstructured grids: the 2D magnetotelluric example,” Geophysics, vol. 71, no. 6, pp. G291–G299, 2006.
[17]  Y. Li and K. Key, “2D marine controlled-source electromagnetic modeling—part 1: an adaptive finite-element algorithm,” Geophysics, vol. 72, pp. WA51–WA62, 2007.
[18]  Y. Li and S. Constable, “2D marine controlled-source electromagnetic modeling—part 2: the effect of bathymetry,” Geophysics, vol. 72, pp. WA63–WA71, 2007.
[19]  A. Abubakar, T. M. Habashy, V. L. Druskin, L. Knizhnerman, and D. Alumbaugh, “2.5D forward and inverse modeling for interpreting low-frequency electromagnetic measurements,” Geophysics, vol. 73, no. 4, pp. F165–F177, 2008.
[20]  F. N. Kong, S. E. Johnstad, T. R?sten, and H. Westerdahl, “A 2.5D finite-element-modeling difference method for marine CSEM modeling in stratified anisotropic media,” Geophysics, vol. 73, pp. F9–F19, 2008.
[21]  G. Q. Xue, X. Li, and Q. Y. Di, “The progress of TEM in theory and application,” Progress in Geophysics, vol. 22, pp. 1195–1200, 2007.
[22]  G. Y. Lv, “Current status and development trend of transient EM method,” Computing Techniques for Geophysical and Geochemical Exploration, vol. 29, pp. 111–115, 2007.
[23]  G. Q. Xue, X Li, and Q. Y. Di, “Research progress in TEM forward modeling and inversion calculation,” Progress in Geophysics, vol. 23, pp. 1165–1172, 2008.
[24]  Y. L. Meng and Y. Z. Luo, “Finite element method for solving electromagnetic field with harmonic dipolar source on two-dimensional geoelectric model,” in Annual of the Chinese Geophysical Society, Seismological Press, Beijing, China, 1994.
[25]  H. J. Wang, Methods study on 2.5-D forward and inversion for transient electromagnetic with central loop, Ph.D. thesis, China University of Geosciences, Beijing, China, 2001.
[26]  B. Xiong and Y.-Z. Luo, “Finite element modeling of 2.5-D TEM with block homogeneous conductivity,” Chinese Journal of Geophysics, vol. 49, pp. 590–597, 2006.
[27]  K. J. Xu, Study on 2.5D complex resistivity electromagnetic forward and inversion, Ph.D. thesis, Jilin University, Jilin, China, 2007.
[28]  B. Xiong, “A new formula based on the independent electric and magnetic fields for 2.5-D forward of TEM,” in Proceedings of the 19th International Workshop on Electromagnetic Induction in the Earth, pp. 536–539, 2008.
[29]  Y. Z. Luo and G. Q. Zhang, Application of Electronic Computer in Electrical Prospecting, Wuhan College of Geology Press, 1987.
[30]  S. Z. Xu, FEM in Geophysics, Science Press, Beijing, China, 1994.
[31]  J. M. Jin, J. G. Wang, and D. B. Ge, The Finite Element Method in Electromagnetics, Xidian University Press, Xi'an, China, 1997.
[32]  T. A. Davis and I. S. Duff, “An unsymmetric-pattern multifrontal method for sparse LU factorization,” SIAM Journal on Matrix Analysis and Applications, vol. 18, pp. 140–158, 1997.
[33]  T. A. Davis, Direct Methods for Sparse Linear Systems, SIAM, Philadelphia, Pa, USA, 2007.
[34]  H. Stehfest, “Numerical inversion of Laplace transforms,” Communications of the ACM, vol. 13, pp. 47–49, 1970.
[35]  Z. L. Niu, The Theory of Time-Domain Electromagnetic Methods, Central South University of Technology Press, Hunan, China, 1992.
[36]  J. T. Liu, H. M. Gu, and X. Y. Hu, “Three-components interpretation for transient electromagnetic method,” Yangtze River, vol. 39, pp. 114–116, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133