A geoelectrical survey was carried out in the Metapontum Forest Reserve located along the Ionian coast of the Basilicata region (Southern Italy). In this work we used the method of two-dimensional electrical resistivity tomography for obtaining high-resolution electrical images in the investigated site. In particular, three electrical resistivity tomography, all orthogonal to the coastline, in the investigated area were carried out. To complete and integrate the geophysical data, soil and groundwater samplings, seventeen and five, respectively, were analyzed using chemical physical techniques. Geoelectrical survey, supported by laboratory analysis of soil and water samples have revealed the presence of a process of saltwater in coastal Forest Reserve of Metapontum, which have caused the decline of the existing pine forest with the consequent erosion and desertification problems. The results have disclosed the way to identify and discriminate large areas affected by intensive soil salinization and high resolution electrical images of the subsurface electrical resistivity plays a key role in delineating the saltwater intrusion front in coastal areas. Furthermore, our integrated study represents a contribution to the future programs for the protection, planning, and management of the terrestrial and marine resources in this coastal area. 1. Introduction Coastal areas are of great environmental, economic, social, and cultural relevance. Therefore, the implementation of suitable monitoring and protection actions is fundamental for their preservation and for assuring future use of this resource. Such actions have to be based on an ecosystem perspective for preserving coastal environment integrity and functioning and for planning sustainable resource management of both marine and terrestrial components (EU Recommendation on Integrated Coastal Zone Management—ICZM—European Commission EC/413/2002). Post [1] has defined coastal aquifers as the subsurface equivalents of coastal areas where continental fresh groundwater and seawater meet. Coastal plains are often contaminated by salt waters and the process associated to the marine water entering an aquifer is generally called seawater intrusion. Different approaches have been adopted to estimate seawater intrusion. For example, many authors [2–5] have employed geochemical methods based on measures of electrical conductivity, of chloride concentration, and other cation and anion concentrations, parameters which generally highlight seawater contamination. Nowadays great attention is focused on innovative geophysical
References
[1]
V. E. A. Post, “Fresh and saline groundwater interaction in coastal aquifers: is our technology ready for the problems ahead?” Hydrogeology Journal, vol. 13, no. 1, pp. 120–123, 2005.
[2]
C. P. Petalas and I. B. Diamantis, “Origin and distribution of saline groundwaters in the upper Miocene aquifer system, coastal Rhodope area, northeastern Greece,” Hydrogeology Journal, vol. 7, no. 3, pp. 305–316, 1999.
[3]
C. Petalas and N. Lambrakis, “Simulation of intense salinization phenomena in coastal aquifers-the case of the coastal aquifers of Thrace,” Journal of Hydrology, vol. 324, no. 1–4, pp. 51–64, 2006.
[4]
M. Polemio, P. P. Limoni, D. Mitolo, and F. Santaloia, “Characterisation of the Ionian-Lucanian coastal aquifer and seawater intrusion hazard,” in Proceedings of the 17th Salt Water Intrusion Meeting, pp. 422–434, Delft, The Netherlands, 2002.
[5]
M. A. Somay and U. Gemici, “Assessment of the salinization process at the coastal area with hydrogeochemical tools and geographical information systems (GIS): Sel?uk plain, Izmir, Turkey,” Water, Air, and Soil Pollution, vol. 201, no. 1–4, pp. 55–74, 2009.
[6]
D. W. Steeples, “Engineering and environmental geophysics at the millennium,” Geophysics, vol. 66, pp. 31–35, 2001.
[7]
V. Lapenna, P. Lorenzo, A. Perrone, S. Piscitelli, E. Rizzo, and F. Sdao, “2D electrical resistivity imaging of some complex landslides in the Lucanian Apennine chain, southern Italy,” Geophysics, vol. 70, no. 3, pp. B11–B18, 2005.
[8]
S. Pantelis, M. Kouli, F. Vallianatos, A. Vafidis, and G. Stavroulakis, “Estimation of aquifer hydraulic parameters from surficial geophysical methods: a case study of Keritis Basin in Chania (Crete—Greece),” Journal of Hydrology, vol. 338, no. 1-2, pp. 122–131, 2007.
[9]
D. Chianese and V. Lapenna, “Magnetic probability tomography for environmental purposes: test measurements and field applications,” Journal of Geophysics and Engineering, vol. 4, no. 1, article 08, pp. 63–74, 2007.
[10]
V. Naudet, M. Lazzari, A. Perrone, A. Loperte, S. Piscitelli, and V. Lapenna, “Integrated geophysical and geomorphological approach to investigate the snowmelt-triggered landslide of Bosco Piccolo village (Basilicata, southern Italy),” Engineering Geology, vol. 98, no. 3-4, pp. 156–167, 2008.
[11]
R. Balia, E. Gavaudò, F. Ardau, and G. Ghiglieri, “Geophysical approach to the environmental study of a coastal plain,” Geophysics, vol. 68, no. 5, pp. 1446–1459, 2003.
[12]
A. T. Batayneh, “Use of electrical resistivity methods for detecting subsurface fresh and saline water and delineating their interfacial configuration: a case study of the eastern Dead Sea coastal aquifers, Jordan,” Hydrogeology Journal, vol. 14, no. 7, pp. 1277–1283, 2006.
[13]
P. Bauer, R. Supper, S. Zimmermann, and W. Kinzelbach, “Geoelectrical imaging of groundwater salinization in the Okavango Delta, Botswana,” Journal of Applied Geophysics, vol. 60, no. 2, pp. 126–141, 2006.
[14]
M. A. Koukadaki, G. P. Karatzas, M. P. Papadopoulou, and A. Vafidis, “Identification of the saline zone in a coastal aquifer using electrical tomography data and simulation,” Water Resources Management, vol. 21, no. 11, pp. 1881–1898, 2007.
[15]
S. E. Kruse, M. R. Brudzinski, and T. L. Geib, “Use of electrical and electromagnetic techniques to map seawater intrusion near the Cross-Florida Barge Canal,” Environmental and Engineering Geoscience, vol. 4, no. 3, pp. 331–340, 1998.
[16]
A. A. Nowroozi, S. B. Horrocks, and P. Henderson, “Saltwater intrusion into the freshwater aquifer in the eastern shore of Virginia: a reconnaissance electrical resistivity survey,” Journal of Applied Geophysics, vol. 42, no. 1, pp. 1–22, 1999.
[17]
S. S. Abdul Nassir, M. H. Loke, C. Y. Lee, and M. N. M. Nawawi, “Salt-water intrusion mapping by geoelectrical imaging surveys,” Geophysical Prospecting, vol. 48, no. 4, pp. 647–661, 2000.
[18]
M. Sherif, A. El Mahmoudi, H. Garamoon, and A. Kacimov, “Geoelectrical and hydrogeochemical studies for delineating seawater intrusion in the outlet of Wadi Ham, UAE,” Environmental Geology, vol. 49, no. 4, pp. 536–551, 2006.
[19]
A. Cimino, C. Cosentino, A. Oieni, and L. Tranchina, “A geophysical and geochemical approach for seawater intrusion assessment in the Acquedolci coastal aquifer (Northern Sicily),” Environmental Geology, vol. 55, no. 7, pp. 1473–1482, 2008.
[20]
M. H. Khalil, “Geoelectric resistivity sounding for delineating salt water intrusion in the Abu Zenima area, west Sinai,” Egypt Journal of Geophysics and Engineering, vol. 3, pp. 243–251, 2006.
[21]
D. W. Urish and R. K. Frohlich, “Surface electrical resistivity in coastal groundwater exploration,” Geoexploration, vol. 26, no. 4, pp. 267–289, 1990.
[22]
A. A. M. Ebraheem, M. M. Senosy, and K. A. Dahab, “Geoelectrical and hydrogeochemical studies for delineating ground-water contamination due to salt-water intrusion in the northern part of the Nile Delta, Egypt,” Ground Water, vol. 35, no. 2, pp. 216–222, 1997.
[23]
K. Choudhury and D. K. Saha, “Integrated geophysical and chemical study of saline water intrusion,” Ground Water, vol. 42, no. 5, pp. 671–677, 2004.
[24]
G. Spilotro, F. Canora, F. Caporale, G. Leandro, and N. Vignola, “Hydrogeology and groundwater salinization in the ionian coastal plane of the Basilicata Region,” in Proceedings of the 17th Salt Water Intrusion Meeting, pp. 422–434, Delft, The Netherlands, 2002.
[25]
E. Amezketa, “An integrated methodology for assessing soil salinization, a pre-condition for land desertification,” Journal of Arid Environments, vol. 67, no. 4, pp. 594–606, 2006.
[26]
N. Ciaranfi, M. Maggiore, P. Pieri, L. Rapisardi, G. Ricchetti, and N. Walsh, “Considerazioni sulla neotettonica della Fossa bradanica,” in Nuovi Contributi Alla Realizzazione Della Carta Neotettonica d'Italia, vol. 251, pp. 73–96, C.N.R. Progetto Finalizzato Geodinamica, Napoli, Italy, 1979.
[27]
M. Tropeano, L. Sabato, and P. Pieri, “The Quaternary “Post-turbidite“ sedimentation in the South-Apennines Foredeep (Bradanic Trough-Southern Italy),” Italian Journal of Geosciences Bull, vol. 1, pp. 449–454, 2001.
[28]
E. Valpreda and U. Simeoni, “Assessment of coastal erosion susceptibility at the national scale: the Italian case,” Journal of Coastal Conservation, vol. 9, no. 1, pp. 43–48, 2003.
[29]
B. M. S. Giambastiani, M. Antonellini, G. H. P. Oude Essink, and R. J. Stuurman, “Saltwater intrusion in the unconfined coastal aquifer of Ravenna (Italy): a numerical model,” Journal of Hydrology, vol. 340, no. 1-2, pp. 91–104, 2007.
[30]
A. Satriani, A. Loperte, T. Simoniello, M. D’Emilio, C. Belviso, and V. Lapenna, “A multidisciplinary approach for studying the forest reserve of Metapontum (southern Italy) affected by saltwater intrusion phenomena,” EGU Geophysical Research Abstracts, vol. 9, 2007.
[31]
M. H. Loke and R. D. Barker, “Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method,” Geophysical Prospecting, vol. 44, no. 1, pp. 131–152, 1996.
[32]
Y. Sasaki, “Resolution of resistivity tomography inferred from numerical simulation,” Geophysical Prospecting, vol. 40, no. 4, pp. 453–463, 1992.
[33]
A. Perrone, G. Zeni, S. Piscitelli et al., “Joint analysis of SAR interferometry and electrical resistivity tomography surveys for investigating ground deformation: the case-study of Satriano di Lucania (Potenza, Italy),” Engineering Geology, vol. 88, no. 3-4, pp. 260–273, 2006.
[34]
D. S. Parasnis, Principle of Applied Geophysics, Chapman & Hall, London, UK, 1986.
[35]
W. De Breuk and G. De Moor, “The water table acquifer in the eastern coastal area of Belgium,” Bulletin of the International Association of Scientific Hydrology, vol. 14, pp. 137–155, 1969.
[36]
A. A. R. Zohdy, P. Martin, and R. J. Bisdorf, “A study of seawater intrusion using direct-current soundings in the southeastern part of the Oxnard Plain, California,” Open-File Report 93-524, Geological Survey, 1993.
[37]
Soil Survey Division Staff, Soil Survey Manual USDA Agric Handbook 18, U.S. Government Printing Office, Washington, DC, USA, 1993.