Seismic process is usually considered as an example of occurrence of the regime of self-organizing criticality (SOC). A model of seismic regime as an assemblage of randomly developing episodes of avalanche-like relaxation, occurring at a set of metastable subsystems, can be the alternative of such consideration. The model is defined by two parameters characterizing the scaling hierarchical structure of the geophysical medium and the degree of metastability of subsystems of this medium. In the assemblage, these two parameters define a model b-value. An advantage of such approach consists in a clear physical sense of parameters of the model. The application of the model for parameterization of the seismic regime of the south part of Sakhalin Island is considered. The models of space changeability of the scaling parameter and of temporal changeability of the parameter of metastability are constructed. The anomalous increase of the parameter of metastability was found in connection with the Gornozavodsk and Nevelsk earthquakes. At the present time, high values of this parameter occur in the area of the Poyasok Isthmus. This finding is examined in comparison with other indications of an increase in probability of occurrence of a strong earthquake in the South Sakhalin region. 1. Introduction Seismic process is usually considered as an example of realization of the self-organized criticality—the SOC-model [1–3]. However, as it was argued in [4] the SOC model has a rather limited possibility in interpretation of real seismotectonic processes. Besides, there is no clear interpretation in terms of this model of a difference between regions of high and low seismic activity. Moreover, the analogue between critical phenomena and seismic process is not satisfying enough. The critical phenomena (the second-order phase transitions, for example) proceed without discharge or absorption of energy; and this is their fundamental peculiarity, in many respects determining other features of the critical behavior. But earthquakes are accompanied by release of huge amounts of energy, and this is their fundamental property. Thus it can be concluded, that consideration of a seismic process in terms of the SOC-model is not quite satisfactory. Therefore, alternative approaches are of interest. For quantitative statistic modeling of seismicity regime, the Generalized Omori law and the Epidemic-Type Aftershock-Sequence (ETAS) model are used at the present time [5–7]. However, these models have a formal statistical character; the determination of parameters of the models and even the
References
[1]
P. Bak, C. Tang, and K. Wiesenfeld, “Self-organized criticality,” Physical Review A, vol. 38, no. 1, pp. 364–374, 1988.
[2]
G. A. Sobolev and A. V. Ponomarev, Physics of Earthquakes and Precursors, Nauka, Moscow, Russia, 2003.
[3]
D. L. Turcotte, “Seismicity and self-organized criticality,” Physics of the Earth and Planetary Interiors, vol. 111, no. 3-4, pp. 275–293, 1999.
[4]
Y. Ben-Zion, “Collective behavior of earthquakes and faults: continuum-discrete transitions, progressive evolutionary changes, and different dynamic regimes,” Reviews of Geophysics, vol. 46, no. 4, Article ID RG4006, 2008.
[5]
Y. Ogata, “Statistical models for earthquake occurrence and residual analysis for point processes,” Journal of the American Statistical Association, vol. 83, pp. 9–27, 1988.
[6]
Y. Ogata, “Space-time point-process models for earthquake occurrences,” Annals of the Institute of Statistical Mathematics, vol. 50, no. 2, pp. 379–402, 1998.
[7]
P. A. Reasenberg and L. M. Jones, “Earthquake hazard after a mainshock in California,” Science, vol. 243, no. 4895, pp. 1173–1176, 1989.
[8]
V. Pisarenko and M. Rodkin, “Heavy-tailed distributions in disaster analysis,” Advances in Natural and Technological Hazards Research, vol. 30, 2010.
[9]
M. V. Rodkin, “Alternative to SOC concept—model of seismic regime as a set of episodes of random avalanche-like releases occurring on a set of metastable subsystems,” Izvestiya, Physics of the Solid Earth, vol. 47, no. 11, pp. 966–973, 2011.
[10]
B. B. Mandelbrot, The Fractal Geometry of Nature, W.H. Freeman and Company, 1982.
[11]
M. V. Rodkin, V. F. Pisarenko, and T. A. Rukavishnikova, “Parameterization of regime of rare strong catastrophes-events,” Geoecology, no. 2, pp. 164–172, 2007 (Russian).
[12]
Sornette D., Critical Phenomena in Natural Sciences, Chaos, Fractals, Self-organization and Disorder: Concepts and Tools, Springer Series in Synergetics, Heidelberg, Germany, 2nd edition, 2004.
[13]
T. Utsu, “A method for determining the value of b in a formula showing the magnitude-frequency relation for earthquakes,” Geophysical bulletin of Hokkaido University, vol. 13, pp. 99–103, 1965.
[14]
D. Wei and T. Seno, “Determination of the Amuruan plate motion,” in Mantle Dynamics and Plate Interactions in East Asia, vol. 27 of Geodynamics Series, p. 419, AGU, Washington, DC, USA, 1998.
[15]
B. V. Levin, Ch. U. Kim, and I. N. Tikhonov, “The Gornozavodsk earthquake of August 17(18), 2006, in the south of Sakhalin Island,” Russian Journal of Pacific Geology, vol. 1, no. 2, pp. 194–199, 2007.
[16]
I. N. Tikhonov and Ch. U. Kim, “Confirmed prediction of the 2 August 2007 MW 6.2 Nevelsk earthquake (Sakhalin Island, Russia),” Tectonophysics, vol. 485, no. 1–4, pp. 85–93, 2010.
[17]
A. I. Kozhurin and M. I. Streltsov, “Seismotectonic consequences of the May 28, 1995 Northern Sakhalin Earthquake,” Russia’s Federal System of Seismological Networks and Earthquake Prediction. Information and Analytical Bulletin. The Neftegorsk Earthquake of May 27(28), 1995, pp. 95–100, 1995.
[18]
T. Shimamoto, M. Watanabe, Suzuki, et al., “Surface faults and damage associated with the 1995 Neftegorsk earthquake,” The Journal of the Geological Society of Japan, vol. 102, no. 10, pp. 894–907, 1996.
[19]
M. I. Streltsov, The May 27(28),1995 Neftegorsk Earthquake on Sakhalin Island, Yanus-K, Moscow, Russia, 2005.
[20]
L. N. Poplavskaya, A. I. Ivaschenko, L. S. Oskorbin, et al., Regional catalog of Sakhalin Earthquakes 1905–2005, Institute of Marine Geology and Geophysics Far Eastern Branch RAS, Yuzhno-Sakhalinsk, Russia, 2006.
[21]
S. M. Saprygin, V. E. Kononov, and V. N. Senachin, “Horizontal motions and plate boundaries in Sakhalin and Hokkaido,” Doklady Earth Sciences, vol. 398, no. 7, pp. 1043–1046, 2004.
[22]
I. N. Tikhonov, Methods of Earthquake Catalog Analysis for Purposes of Intermediate- and Short-Term Prediction of Large Seismic Events, Institute of Marine Geology and Geophysics Far Eastern Branch RAS, Vladivostok, Russia, 2006.
[23]
K. Mogi, Earthquake Prediction, Academic Press (Harcourt Brace Jovanovich, Publishers), New York, NY, USA, 1985.
[24]
B. V. Levin, Ed., Catalog of Earthquakes of the South Sakhalin Area since 2000 until 2010 years, Vladivostok, Russia, 2011.
[25]
S. M. Saprygin, “Detailed seismic zoning of Sakhalin,” Russian Journal of Pacific Geology, vol. 2, no. 2, pp. 158–164, 2008 (Russian).
[26]
N. A. Bogdanov, Ed., Tectonic Map of the Sea of Okhotsk Region in 1:2500000 Scale, ILOVM RAS, Moscow, Russia, 2000.
[27]
M. V. Rodkin, “Seismicity in the generalized vicinity of large earthquakes,” Journal of Volcanology and Seismology, vol. 2, no. 6, pp. 435–445, 2008.
[28]
V. A. Kalinin, M. V. Rodkin, and I. S. Tomashevskaya, Geodynamic Effects of Physicochemical Transformations in a Solid Medium, Nauka, Moscow, Russia, 1989.
[29]
M. V. Rodkin, A. D. Gvishiani, and L. M. Labuntsova , “Models of generation of power laws of distribution in the processes of seismicity and in formation of oil fields and ore deposits,” Russian Journal of Earth Sciences, vol. 10, no. 5, 2008.
[30]
D. Sornette, “Earthquakes: from chemical alteration to mechanical rupture,” Physics Report, vol. 313, no. 5, pp. 237–291, 1999.
[31]
M. A. Sadovskii, Ed., Discrete Properties of Geophysical Media, Nauka, Moscow, Russia, 1989.