全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Multimodel GCM-RCM Ensemble-Based Projections of Temperature and Precipitation over West Africa for the Early 21st Century

DOI: 10.1155/2012/972896

Full-Text   Cite this paper   Add to My Lib

Abstract:

Reliable climate change scenarios are critical for West Africa, whose economy relies mostly on agriculture and, in this regard, multimodel ensembles are believed to provide the most robust climate change information. Toward this end, we analyze and intercompare the performance of a set of four regional climate models (RCMs) driven by two global climate models (GCMs) (for a total of 4 different GCM-RCM pairs) in simulating present day and future climate over West Africa. The results show that the individual RCM members as well as their ensemble employing the same driving fields exhibit different biases and show mixed results in terms of outperforming the GCM simulation of seasonal temperature and precipitation, indicating a substantial sensitivity of RCMs to regional and local processes. These biases are reduced and GCM simulations improved upon by averaging all four RCM simulations, suggesting that multi-model RCM ensembles based on different driving GCMs help to compensate systematic errors from both the nested and the driving models. This confirms the importance of the multi-model approach for improving robustness of climate change projections. Illustrative examples of such ensemble reveal that the western Sahel undergoes substantial drying in future climate projections mostly due to a decrease in peak monsoon rainfall. 1. Introduction Addressing climate change over West Africa is a great challenge for understanding the effects of greenhouse gas (GHG) warming at local and regional scales. Such assessment is critical because Africa is mostly covered by semiarid regions known for their unreliable rainfall regime which is highly variable on intraseasonal, interannual and interdecadal time scales [1–3]. This variability often translates into severe droughts and floods [4] and may substantially impact food security and water resources. Therefore, changes in future climate may pose significant threats to the region especially in resource poor contexts where agriculture is a prominent instrument for enhancing food security, and adaptive capacity is relatively low [5]. The production of accurate and reliable climate change scenarios for the West African continent is therefore a major issue. In this region, climate change projections have been often derived using global climate models (GCMs) [6, 7]. However, despite the significant progress in climate modeling, projections over West Africa are limited by at least two factors. First, the West African monsoon precipitation response to anthropogenic climate change is uncertain [8, 9] because the spread among the

References

[1]  M. Hoerling, J. Hurrell, J. Eischeid, and A. Phillips, “Detection and attribution of twentieth-century northern and southern African rainfall change,” Journal of Climate, vol. 19, no. 16, pp. 3989–4008, 2006.
[2]  G. S. Jenkins, A. T. Gaye, and B. Sylla, “Late 20th century attribution of drying trends in the Sahel from the Regional Climate Model (RegCM3),” Geophysical Research Letters, vol. 32, no. 22, Article ID L22705, pp. 1–4, 2005.
[3]  G. Wang and E. A. B. Eltahir, “Ecosystem dynamics and the Sahel drought,” Geophysical Research Letters, vol. 27, no. 6, pp. 795–798, 2000.
[4]  M. B. Sylla, A. T. Gaye, G. S. Jenkins, J. S. Pal, and F. Giorgi, “Consistency of projected drought over the Sahel with changes in the monsoon circulation and extremes in a regional climate model projections,” Journal of Geophysical Research D, vol. 115, no. 16, article D16108, 2010.
[5]  M. Boko, I. Niang, A. Nyong, et al., “Impacts, Adaptation and Vulnerability,” in Africa. Climate Change 2007, M. L. Parry, O. F. Canziani, J. P. Palutikof, and P. J. van der Linden, Eds., pp. 433–467, Cambridge University Press, Cambridge UK, 2007.
[6]  M. Hulme, R. Doherty, T. Ngara, M. New, and D. Lister, “African climate change: 1900–2100,” Climate Research, vol. 17, no. 2, pp. 145–168, 2001.
[7]  A. F. Kamga, G. S. Jenkins, A. T. Gaye, A. Garba, A. Sarr, and A. Adedoyin, “Evaluating the National Center for Atmospheric Research climate system model over West Africa: present-day and the 21st century A1 scenario,” Journal of Geophysical Research D, vol. 110, no. 3, Article ID D03106, 18 pages, 2005.
[8]  H. Douville, D. Salas-Mélia, and S. Tyteca, “On the tropical origin of uncertainties in the global land precipitation response to global warming,” Climate Dynamics, vol. 26, no. 4, pp. 367–385, 2006.
[9]  H. Christensen, B. Hewitson, A. Busuioc, et al., “Regional climate projections,” in Climate Change 2007, S. Solomon, D. Qin, and M. Manning, Eds., Cambridge University Press, New York, NY, USA, 2007.
[10]  M. Biasutti and A. Giannini, “Robust Sahel drying in response to late 20th century forcings,” Geophysical Research Letters, vol. 33, no. 11, Article ID L11706, 2006.
[11]  A. Giannini, M. Biasutti, I. M. Held, and A. H. Sobel, “A global perspective on African climate,” Climatic Change, vol. 90, no. 4, pp. 359–383, 2008.
[12]  H. Paeth, R. Girmes, G. Menz, and A. Hense, “Improving seasonal forecasting in the low latitudes,” Monthly Weather Review, vol. 134, no. 7, pp. 1859–1879, 2006.
[13]  M. Rummukainen, “State-of-the-art with regional climate models,” Climate Change, vol. 1, pp. 96–82, 2010.
[14]  F. Giorgi and L. O. Mearns, “Introduction to special section: regional climate modeling revisited,” Journal of Geophysical Research, vol. 104, pp. 6335–6352, 1999.
[15]  H. Paeth, A. Capo-Chichi, and W. Endlicher, “Climate change and food security in tropical West Africa—a dynamic-statistical modelling approach,” Erdkunde, vol. 62, no. 2, pp. 101–115, 2008.
[16]  N. Philippon, N. Martiny, and P. Camberlin, “Forecasting the vegetation photosynthetic activity over the Sahel: a model output Statistics approach,” International Journal of Climatology, vol. 29, no. 10, pp. 1463–1477, 2009.
[17]  E. A. Afiesimama, J. S. Pal, B. J. Abiodun, W. J. Gutowski, and A. Adedoyin, “Simulation of West African monsoon using the RegCM3. Part I: model validation and interannual variability,” Theoretical and Applied Climatology, vol. 86, no. 1–4, pp. 23–37, 2006.
[18]  F. Kamga and E. Buscarlet, “Simulation du climat de l'Afrique de l'ouest a l'aide d'un modele climatique régional: validation sur la période 1961–1990,” La Météorologie, vol. 52, pp. 28–37, 2006.
[19]  J. S. Hsieh and K. H. Cook, “A study of the energetics of African easterly waves using regional climate model,” Journal of the Atmospheric Sciences, vol. 64, no. 2, pp. 421–440, 2007.
[20]  M. B. Sylla, E. Coppola, L. Mariotti et al., “Multiyear simulation of the African climate using a regional climate model (RegCM3) with the high resolution ERA-interim reanalysis,” Climate Dynamics, vol. 35, no. 1, pp. 231–247, 2010.
[21]  H. Paeth, K. Born, R. Podzun, and D. Jacob, “Regional dynamical downscaling over West Africa: model evaluation and comparison of wet dry years,” Meteorologische Zeitschrift, vol. 14, no. 3, pp. 349–367, 2005.
[22]  S. M. Hagos and K. H. Cook, “Dynamics of the West African monsoon jump,” Journal of Climate, vol. 20, no. 21, pp. 5264–5284, 2007.
[23]  M. B. Sylla, A. Dell'Aquila, P. M. Ruti, and F. Giorgi, “Simulation of the intraseasonal and the interannual variability of rainfall over West Africa with RegCM3 during the monsoon period,” International Journal of Climatology, vol. 30, no. 12, pp. 1865–1883, 2010.
[24]  E. K. Vizy and K. H. Cook, “Development and application of a mesoscale climate model for the tropics: influence of sea surface temperature anomalies on the West African monsoon,” Journal of Geophysical Research D, vol. 107, no. 3, p. 22, Article ID 4023, 2002.
[25]  R. Ramel, H. Gallé, and C. Messager, “On the northward shift of the West African monsoon,” Climate Dynamics, vol. 26, no. 4, pp. 429–440, 2006.
[26]  W. Moufouma-Okia and D. P. Rowell, “Impact of soil moisture initialisation and lateral boundary conditions on regional climate model simulations of the West African Monsoon,” Climate Dynamics, vol. 35, no. 1, pp. 213–229, 2009.
[27]  M. B. Sylla, F. Giorgi, P. M. Ruti, S. Calmanti, and A. Dell'Aquila, “The impact of deep convection on the West African summer monsoon climate: a regional climate model sensitivity study,” Quarterly Journal of the Royal Meteorological Society, vol. 137, no. 659, pp. 1417–1430, 2011.
[28]  G. Jung and H. Kunstmann, “High-resolution regional climate modeling for the Volta region of West Africa,” Journal of Geophysical Research D, vol. 112, no. 23, Article ID D23108, 2007.
[29]  L. Mariotti, E. Coppola, M. B. Sylla, F. Giorgi, and C. Piani, “Regional climate model simulation of projected 21st century climate change over an all-Africa domain: comparison analysis of nested and driving model results,” Journal of Geophysical Research, vol. 116, p. 22, Article ID D15111, 2011.
[30]  H. Paeth, N. M. Hall, M. A. Gaertner et al., “Progress in regional downscaling of west African precipitation,” Atmospheric Science Letters, vol. 12, no. 1, pp. 75–82, 2011.
[31]  H. Paeth, K. Born, R. Girmes, R. Podzun, and D. Jacob, “Regional climate change in tropical and Northern Africa due to greenhouse forcing and land use changes,” Journal of Climate, vol. 22, no. 1, pp. 114–132, 2009.
[32]  R. Neumann, G. Jung, P. Laux, and H. Kunstmann, “Climate trends of temperature, precipitation and river discharge in the Volta Basin of West Africa,” International Journal of River Basin Management, vol. 5, no. 1, pp. 17–30, 2007.
[33]  P. Oettli, B. Sultan, C. Baron, and M. Vrac, “Are regional climate models relevant for crop yield prediction in West Africa?” Environmental Research Letters, vol. 6, no. 1, 2011.
[34]  F. Giorgi, “Climate change prediction,” Climatic Change, vol. 73, no. 3, pp. 239–265, 2005.
[35]  F. Giorgi, N. S. Diffenbaugh, X. J. Gao et al., “The regional climate change hyper-matrix framework,” Eos, vol. 89, no. 45, pp. 445–446, 2008.
[36]  C. Tebaldi and R. Knutti, “The use of the multi-model ensemble in probabilistic climate projections,” Philosophical Transactions of the Royal Society A, vol. 365, no. 1857, pp. 2053–2075, 2007.
[37]  F. Giorgi, “Uncertainties in climate change projections, from the global to the regional scale,” EPJ Web of Conferences, vol. 9, pp. 115–129, 2010.
[38]  F. Giorgi and E. Coppola, “Does the model regional bias affect the projected regional climate change? An analysis of global model projections: a letter,” Climatic Change, vol. 100, no. 3, pp. 787–795, 2010.
[39]  J. S. Pal, F. Giorgi, X. Bi et al., “The ICTP RegCM3 and RegCNET: regional climate modeling for the developing world,” Bulletin of the American Meteorology Society, vol. 88, pp. 1395–1409, 2007.
[40]  D. Jacob, U. Andr?, G. Elgered et al., “A comprehensive model inter-comparison study investigating the water budget during the BALTEX-PIDCAP period,” Meteorology and Atmospheric Physics, vol. 77, no. 1–4, pp. 19–43, 2001.
[41]  E. Kjellstr?m, L. B?rring, S. Gollvik, et al., “A 140-year simulation of European climate with the new version of the Rossby Centre regional atmospheric climate model (RCA3),” Reports Meteorology and Climatology 108, SMHI, SE-60176, Norrk?ping, Sweden, 2005.
[42]  R. G. Jones, M. Noguer, and D. C. Hassell, Generating high resolution regional climate change using PRECIS, Met Office Hadley Centre, Exter, UK, 2004.
[43]  G. Roeckner, L. B?uml, and R. Bonaventura, “The Atmospheric general circulation model ECHAM5. Part I: model description,” Tech. Rep. 349, Max Planck-Institut für Meteorologie, Hamburg, Germany, 2003.
[44]  M. Collins, B. B. B. Booth, G. R. Harris, J. M. Murphy, D. M. H. Sexton, and M. J. Webb, “Towards quantifying uncertainty in transient climate change,” Climate Dynamics, vol. 27, no. 2-3, pp. 127–147, 2006.
[45]  J. L. Redelsperger, C. D. Thorncroft, A. Diedhiou, T. Lebel, D. J. Parker, and J. Polcher, “African Monsoon Multidisciplinary Analysis: an international research project and field campaign,” Bulletin of the American Meteorological Society, vol. 87, no. 12, pp. 1739–1746, 2006.
[46]  Van der Linden and J. F. B. Mitchell, ENSEMBLES: Climate Change and its impact: Summary of Research and the Results from the ENSEMBLES Project, Met Office Hadley Centre, Exeter, UK, 2009.
[47]  M. B. Sylla, A. T. Gaye, J. S. Pal, G. S. Jenkins, and X. Q. Bi, “High-resolution simulations of West African climate using regional climate model (RegCM3) with different lateral boundary conditions,” Theoretical and Applied Climatology, vol. 98, no. 3-4, pp. 293–314, 2009.
[48]  R. F. Adler, G. J. Huffman, A. Chang et al., “The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present),” Journal of Hydrometeorology, vol. 4, no. 6, pp. 1147–1167, 2003.
[49]  D. Mitchell, T. R. Carter, P. D. Jones, M. Hulme, and M. New, “A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: the observed record (1901–2000) and 16 scenarios (2001–2100),” Tyndall Centre for Climate Change Research, Norwich, UK, Working Paper 55, 2004.
[50]  P. Xie and P. A. Arkin, “Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs,” Bulletin of the American Meteorological Society, vol. 78, no. 11, pp. 2539–2558, 1997.
[51]  B. Rudolf, C. Beck, J. Grieser, and U. Schneider, “Global Precipitation Analysis Products. Global Precipitation Climatology Centre (GPCC), DWD,” Internet publication, pp. 1–8, 2005.
[52]  S. M. Uppala, P. W. K?llberg, A. J. Simmons et al., “The ERA-40 re-analysis,” Quarterly Journal of the Royal Meteorological Society, vol. 131, no. 612, pp. 2961–3012, 2005.
[53]  M. Kanamitsu, W. Ebisuzaki, J. Woollen et al., “NCEP-DOE AMIP-II reanalysis (R-2),” Bulletin of the American Meteorological Society, vol. 83, no. 11, pp. 1631–1643, 2002.
[54]  S. Simmons, D. D. Uppala, and S. Kobayashi, “ERA-interim: new ECMWF reanalysis products from 1989 onwards,” ECMWF Newsletter, vol. 110, pp. 29–35, 2007.
[55]  S. M. Uppala, D. Dee, S. Kobayashi, P. Berrisford, and A. Simmons, “Towards a climate data assimilation system: status update of ERA-interim,” ECMWF Newsletter, vol. 115, pp. 12–18, 2008.
[56]  K. E. Trenberth, D. P. Stepaniak, J. W. Hurrell, and M. Fiorino, “Quality of reanalyses in the tropics,” Journal of Climate, vol. 14, no. 7, pp. 1499–1510, 2001.
[57]  A. Diongue, J. P. Lafore, J. L. Redelsperger, and R. Roca, “Numerical study of a Sahelian synoptic weather system: initiation and mature stages of convection and its interactions with the large-scale dynamics,” Quarterly Journal of the Royal Meteorological Society, vol. 128, no. 584, pp. 1899–1928, 2002.
[58]  Z. Pan, J. H. Christensen, R. W. Arritt, W. J. Gutowski, E. S. Takle, and F. Otieno, “Evaluation of uncertainties in regional climate change simulations,” Journal of Geophysical Research D, vol. 106, no. 16, pp. 17735–17751, 2001.
[59]  M. Ashfaq, C. B. Skinner, and N. S. Diffenbaugh, “Influence of SST biases on future climate change projections,” Climate Dynamics, vol. 36, no. 7, pp. 1303–1319, 2011.
[60]  F. Giorgi, C. Jones, and G. Asrar, “Addressing climate information needs at the regional level: the CORDEX framework,” World Meteorological Organization (WMO) Bulletin, vol. 58, pp. 175–183, 2009.
[61]  M. Biasutti and A. H. Sobel, “Delayed Sahel rainfall and global seasonal cycle in a warmer climate,” Geophysical Research Letters, vol. 36, no. 23, Article ID L23707, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133