全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Measurement of the Characteristics of TIDs Using Small and Regional Networks of GPS Receivers during the Campaign of 17–30 July of 2008

DOI: 10.1155/2012/548784

Full-Text   Cite this paper   Add to My Lib

Abstract:

This scientific report presents the results of a dedicated experiment that was conducted within the framework of the Low-latitude ionospheric Sensor Network (LISN) observatory to measure the characteristics of medium-scale (hundreds of km) Traveling Ionospheric Disturbances (TIDs) as they transit through the low-latitude ionosphere. A small array of 3 GPS receivers separated by 4-5?km placed in a triangular configuration was installed near Huancayo in Peru possessing several characteristics of a radio-interferometer. During the campaign days, 17–30 July 2008, TIDs were observed daily. On July 20, 2008 between 22 and 24?UT several TIDs moved across the small array of GPS receivers with a velocity near 130?m/s, were directed northward and had wavelengths close to 450?km. Other GPS receivers that were operating hundreds of km away from Huancayo show also similar TEC traces and provide a phase velocity equal to 150?m/s. This value was measured using the GPS at Piura, Cuzco and Huancayo. Based on this positive result, we conclude that small and/or regional arrays of GPS receivers can be used at low latitudes to study the role that gravity waves may have on seeding plasma bubbles. 1. Introduction Traveling ionospheric disturbances (TIDs) are the ionospheric manifestation of neutral density oscillations called atmospheric gravity waves (AGWs or GWs). AGWs originate in the troposphere or stratosphere, and often propagate to F-region heights, where they induce oscillations in the plasma density via ion-neutral coupling. When AGW winds drive plasma along magnetic field lines via ion-neutral collisions, “classical” TIDs result [1–3]. However, at night the electrodynamics are favorable to the production of “nonclassical” or “electrodynamic” TIDs, such that vertical movement of the F-layer results [4–6]. TIDs that reach F-region altitudes are divided into two classes: medium-scale (MSTIDs) and large-scale (LSTIDs). MSTIDs primarily originate from tropospheric weather systems and mountain turbulence; depending on background wind conditions and other factors, these may propagate in any direction. LSTIDs are produced by auroral energy injection during geomagnetic storms. They typically propagate meridionally from polar regions towards the equator. AGWs have a wide range of observed wavelengths and propagation velocities, frequently having horizontal wavelengths of up to hundreds of kilometers and speeds of hundreds of meters per second. As they propagate from lower altitudes, their amplitudes grow exponentially. At mid-latitudes, AGWs have been observed to have

References

[1]  W. H. Hooke, “Ionospheric irregularities produced by internal atmospheric gravity waves,” Journal of Atmospheric and Terrestrial Physics, vol. 30, no. 5, pp. 795–823, 1968.
[2]  T. M. Georges and W. H. Hooke, “Wave- induced fluctuations in ionospheric electron content. A model indicating some observational biases,” Journal of Geophysical Research, vol. 75, no. 31, pp. 6295–6308, 1970.
[3]  M. J. Davis, “The integrated ionospheric response to internal atmospheric gravity waves,” Journal of Atmospheric and Terrestrial Physics, vol. 35, no. 5, pp. 929–959, 1973.
[4]  M. C. Kelley and S. Fukao, “Turbulent upwelling of the mid-latitude ionosphere. II—theoretical framework,” Journal of Geophysical Research, vol. 96, pp. 3747–3753, 1991.
[5]  T. L. Beach, “Total electron content variations due to nonclassical traveling ionospheric disturbances: theory and Global Positioning System observations,” Journal of Geophysical Research A, vol. 102, no. 4, pp. 7279–7292, 1997.
[6]  C. A. Miller, “Electrodynamics of midlatitude spread F 1. Observations of unstable, gravity wave-induced ionospheric electric fields at tropical latitudes,” Journal of Geophysical Research A, vol. 102, no. 6, pp. 11521–11532, 1997.
[7]  A. R. Jacobson, R. Carlos, R. Massey, and G. Wu, “Observations of traveling ionospheric disturbances with a satellite-beacon radio interferometer: seasonal and local time behavior,” Journal of Geophysical Research, vol. 100, pp. 1653–1665, 1995.
[8]  P. J. Sultan, “Linear theory and modeling of the Rayleigh-Taylor instability leading to occurrence of equatorial spread F,” Journal of Geophysical Research, vol. 101, pp. 26819–26827, 1996.
[9]  R. F. Woodman and C. La Hoz, “Radar observations of F region equatorial irregularities,” Journal of Geophysical Research, vol. 81, no. 31, pp. 5447–5466, 1976.
[10]  A. J. Scannapieco and S. L. Ossakow, “Nonlinear equatorial spread F evolution,” Geophysical Research Letters, vol. 3, pp. 451–454, 1976.
[11]  M. C. Kelley, M. F. Larsen, C. LaHoz, and J. P. McClure, “Gravity wave initiation of equatorial spread F: a case study,” Journal of Geophysical Research, vol. 86, pp. 9087–9100, 1981.
[12]  E. Kudeki, A. Akgiray, M. Milla, J. L. Chau, and D. L. Hysell, “Equatorial spread-F initiation: post-sunset vortex, thermospheric winds, gravity waves,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 69, no. 17-18, pp. 2416–2427, 2007.
[13]  R. T. Tsunoda, “Seeding of equatorial plasma bubbles with electric fields from an Es-layer instability,” Journal of Geophysical Research A, vol. 112, no. 6, Article ID A06304, 13 pages, 2007.
[14]  S. Fukao, M. Kelley, and T. Shirakawa, “Turbulent upwelling of the mid-latitude ionosphere. I- Observational results by the MU radar,” Journal of Geophysical Research, vol. 96, pp. 3725–3746, 1991.
[15]  W. L. Oliver, S. Fukao, M. Sato, Y. Otsuka, T. Takami, and T. Tsuda, “Middle and upper atmosphere radar observations of the dispersion relation for ionospheric gravity waves,” Journal of Geophysical Research, vol. 100, no. 12, pp. 23763–23768, 1995.
[16]  M. K. Ejiri, K. Shiokawa, T. Ogawa, K. Igarashi, T. Nakamura, and T. Tsuda, “Statistical study of short-period gravity waves on OH and OI nightglow images at two separated sites,” Journal of Geophysical Research D, vol. 108, no. 21, pp. 1–12, 2003.
[17]  S. Suzuki, K. Shiokawa, Y. Otsuka, T. Ogawa, and P. Wilkinson, “Statistical characteristics of gravity waves observed by an all-sky imager at Darwin, Australia,” Journal of Geophysical Research D, vol. 109, no. 20, pp. D20–DS07, 2004.
[18]  A. A. Pimenta, M. C. Kelley, Y. Sahai, J. A. Bittencourt, and P. R. Fagundes, “Thermospheric dark band structures observed in all-sky OI?630?nm emission images over the Brazilian low-latitude sector,” Journal of Geophysical Research A, vol. 113, no. 1, Article ID A01307, 9 pages, 2008.
[19]  D. C. M. Amorim, A. A. Pimenta, J. A. Bittencourt, and P. R. Fagundes, “Long-term study of medium-scale traveling ionospheric disturbances using O i?630?nm all-sky imaging and ionosonde over Brazilian low latitudes,” Journal of Geophysical Research A, vol. 116, no. 6, Article ID A06312, 7 pages, 2011.
[20]  K. Shiokawa, C. Ihara, Y. Otsuka, and T. Ogawa, “Statistical study of nighttime medium-scale traveling ionospheric disturbances using midlatitude airglow images,” Journal of Geophysical Research A, vol. 108, no. 1, article 1052, 2003.
[21]  J. L. Bougeret, “Some effects produced by the ionosphere on radio interferometry—fluctuations in apparent source position and image distortion,” Astronomy & Astrophysics, vol. 96, pp. 259–266, 1981.
[22]  C. Mercier, “Observations of atmospheric gravity waves by radiointerferometry,” Journal of Atmospheric and Terrestrial Physics, vol. 48, no. 7, pp. 605–624, 1986.
[23]  A. R. Jacobson and W. C. Erickson, “A method for characterizing transient ionospheric disturbances using a large radio telescope array,” Astronomy & Astrophysics, vol. 257, pp. 401–409, 1992.
[24]  C. E. Valladares, J. Villalobos, M. A. Hei et al., “Simultaneous observation of traveling ionospheric disturbances in the Northern and Southern Hemispheres,” Annales Geophysicae, vol. 27, no. 4, pp. 1501–1508, 2009.
[25]  M. C. Kelley, The Earth’s Ionosphere, Academic Press, London, UK, 1989.
[26]  M. W. Kirkland and A. R. Jacobson, “Drift-parallax determination of the altitude of traveling ionospheric disturbances observed with the Los Alamos radio-beacon interferometer,” Radio Science, vol. 33, no. 6, pp. 1807–1825, 1998.
[27]  S. L. Vadas, “Horizontal and vertical propagation and dissipation of gravity waves in the thermosphere from lower atmospheric and thermospheric sources,” Journal of Geophysical Research A, vol. 112, no. 6, Article ID A06305, 23 pages, 2007.
[28]  E. L. Afraimovich, K. S. Palamartchouk, and N. P. Perevalova, “GPS radio interferometry of travelling ionospheric disturbances,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 60, no. 12, pp. 1205–1223, 1998.
[29]  E. L. Afraimovich, E. A. Kosogorov, L. A. Leonovich, K. S. Palamartchouk, N. P. Perevalova, and O. M. Pirog, “Determining parameters of large-scale traveling ionospheric disturbances of auroral origin using GPS-arrays,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 62, no. 7, pp. 553–565, 2000.
[30]  E. L. Afraimovich, N. P. Perevalova, and S. V. Voyeikov, “Traveling wave packets of total electron content disturbances as deduced from global GPS network data,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 65, no. 11–13, pp. 1245–1262, 2003.
[31]  D. C. Fritts, M. A. Abdu, B. R. Batista, et al., “Overview and summary of the Spread F Experiment (SpreadFEx),” Annales Geophysicae, vol. 27, pp. 2141–2155, 2009.
[32]  E. Sardón and N. Zarraoa, “Estimation of total electron content using GPS data: how stable are the differential satellite and receiver instrumental biases?” Radio Science, vol. 32, no. 5, pp. 1899–1910, 1997.
[33]  C. Mercier and A. R. Jacobson, “Observations of atmospheric gravity waves by radio interferometry: are results biased by the observational technique?” Annales Geophysicae, vol. 15, no. 4, pp. 430–442, 1997.
[34]  K. Hocke and K. Schlegel, “A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982–1995,” Annales Geophysicae, vol. 14, no. 9, pp. 917–940, 1996.
[35]  J. K. Hargreaves, The Solar-Terrestrial Environment: An Introduction to Geospace, Cambridge University Press, Cambridge, UK, 1992.
[36]  E. A. Kherani, M. A. Abdu, E. R. D. De Paula, D. C. Fritts, J. H. A. Sobral, and F. C. de Meneses Jr., “The impact of gravity waves rising from convection in the lower atmosphere on the generation and nonlinear evolution of equatorial bubble,” Annales Geophysicae, vol. 27, no. 4, pp. 1657–1668, 2009.
[37]  D. C. Fritts, S. L. Vadas, D. M. Riggin et al., “Gravity wave and tidal influences on equatorial spread F based on observations during the Spread F Experiment (SpreadFEx),” Annales Geophysicae, vol. 26, no. 11, pp. 3235–3252, 2008.
[38]  M. A. Hei, R. A. Heelis, and J. P. McClure, “Seasonal and longitudinal variation of large-scale topside equatorial plasma depletions,” Journal of Geophysical Research, vol. 110, Article ID A12315, 13 pages, 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133