全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Global Longitudinal Dependence Observation of the Neutral Wind and Ionospheric Density Distribution

DOI: 10.1155/2012/342581

Full-Text   Cite this paper   Add to My Lib

Abstract:

The statistical global view of the low-latitude ionospheric density stimulates further interest in studying the strong longitudinal variability of the ionospheric density structures in low-to-equatorial latitudes. However, we are not completely certain how the electrodynamics and ion-neutral coupling proceeds at low latitudes; in particular, the longitudinal difference in the dynamics of plasma structures in the low-to-mid latitude ionosphere is not yet fully understood. Numerical studies of latent heat release in the troposphere have indicated that the lower atmosphere can indeed introduce a longitudinal dependence and variability of the low-latitude ionosphere during quiet conditions. For the first time, we present simultaneous observations of the tidally modulated global wind structure, using TIDI observations, in the E-region and the ionospheric density distribution using ground (global GPS receivers) and space-based (C/NOFS in situ density and GPS TEC on CHAMP) instruments. Our results show that the longitudinally structured zonal wind component could be responsible for the formation of wave number four pattern of the equatorial anomaly. 1. Introduction The plasma in the low-latitude ionosphere between ±30° magnetic latitude exists entirely on closed field lines and so is relatively cut off from magnetospheric and solar-wind drivers compared to mid- and high-latitude regions of the ionosphere. Most frequently, the highly populated plasma density in this region, which may be about two-thirds of all of the plasma in geospace, can become a disturbed space environment and disrupt the detection and tracking of aircraft, missiles, satellites, and other targets, distort communication and navigation, and interfere with global command, control, and surveillance operations. The plasma in the low and equatorial latitudes is disturbed or redistributed by transport mechanisms that form enhanced density located several degrees to either side of the magnetic equator, forming the equatorial ionization anomaly (EIA). The vertical drift (primarily drift) is the primary plasma transport mechanism at low-to-equatorial latitudes. There are few cases reported on the night side [1, 2] as the EIA formation process is predominantly active on the dayside. In the evening sector, when the conductivity becomes stronger at the terminator, the plasma redistribution is intensified again, forming a stronger EIA structure known as the prereversal enhancement. The redistribution of plasma occurs both during disturbed and quiet periods. During magnetically quiet periods, the tidal

References

[1]  W. B. Wang, J. Lei, A. G. Burns et al., “Ionospheric electric field variations during a geomagnetic storm simulated by a coupled magnetosphere ionosphere thermosphere (CMIT) model,” Geophysical Research Letters, vol. 35, no. 18, Article ID L18105, 2008.
[2]  E. Yizengaw, M. B. Moldwin, Y. Sahai, and R. De Jesus, “Strong postmidnight equatorial ionospheric anomaly observations during magnetically quiet periods,” Journal of Geophysical Research A, vol. 114, no. 12, Article ID A12308, 2009.
[3]  S. L. England, S. Maus, T. J. Immel, and S. B. Mende, “Longitudinal variation of the E-region electric fields caused by atmospheric tides,” Geophysical Research Letters, vol. 33, no. 21, Article ID L21105, 2006.
[4]  E. Sagawa, T. J. Immel, H. U. Frey, and S. B. Mende, “Longitudinal structure of the equatorial anomaly in the nighttime ionosphere observed by IMAGE/FUV,” Journal of Geophysical Research A, vol. 110, no. 11, Article ID A11302, 2005.
[5]  T. J. Immel, E. Sagawa, S. L. England et al., “Control of equatorial ionospheric morphology by atmospheric tides,” Geophysical Research Letters, vol. 33, no. 15, Article ID L15108, 2006.
[6]  L. Scherliess, D. C. Thompson, and R. W. Schunk, “Longitudinal variability of low-latitude total electron content: tidal influences,” Journal of Geophysical Research A, vol. 113, no. 1, Article ID A01311, 2008.
[7]  C. H. Lin, C. C. Hsiao, J. Y. Liu, and C. H. Liu, “Longitudinal structure of the equatorial ionosphere: time evolution of the four-peaked EIA structure,” Journal of Geophysical Research A, vol. 112, no. 12, p. A12305, 2007.
[8]  G. Liu, T. J. Immel, S. L. England, K. K. Kumar, and G. Ramkumar, “Temporal modulations of the longitudinal structure in F2 peak height in the equatorial ionosphere as observed by COSMIC,” Journal of Geophysical Research A, vol. 115, no. 4, Article ID A04303, 2010.
[9]  S. L. England, T. J. Immel, E. Sagawa et al., “Effect of atmospheric tides on the morphology of the quiet time, postsunset equatorial ionospheric anomaly,” Journal of Geophysical Research A, vol. 111, no. 10, Article ID A10S19, 2006.
[10]  H. Kil, E. R. Talaat, S. J. Oh, L. J. Paxton, S. L. England, and S. Y. Su, “Wave structures of the plasma density and vertical e × B drift in low-latitude F region,” Journal of Geophysical Research A, vol. 113, no. 9, Article ID A09312, 2008.
[11]  M. E. Hagan and J. M. Forbes, “Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release,” Journal of Geophysical Research D, vol. 107, no. 24, pp. 21–22, 2002.
[12]  M. E. Hagan, A. Maute, R. G. Roble, A. D. Richmond, T. J. Immel, and S. L. England, “Connections between deep tropical clouds and the Earth's ionosphere,” Geophysical Research Letters, vol. 34, no. 20, Article ID L20109, 2007.
[13]  C. McLandress and W. E. Ward, “Tidal/gravity wave interactions and their influence on the large- scale dynamics of the middle atmosphere: model results,” Journal of Geophysical Research, vol. 99, no. 4, pp. 8139–8155, 1994.
[14]  H. Lühr, K. H?usler, and C. Stolle, “Longitudinal variation of F region electron density and thermospheric zonal wind caused by atmospheric tides,” Geophysical Research Letters, vol. 34, no. 16, Article ID L16102, 2007.
[15]  R. A. Heelis, “Electrodynamics in the low and middle latitude ionosphere: a tutorial,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 66, no. 10, pp. 825–838, 2004.
[16]  T. L. Killeen, Q. Wu, S. C. Solomon et al., “TIMED Doppler Interferometer: overview and recent results,” Journal of Geophysical Research A, vol. 111, no. 10, Article ID A10S01, 2006.
[17]  J. Oberheide, Q. Wu, T. L. Killeen, M. E. Hagan, and R. G. Roble, “Diurnal nonmigrating tides from TIMED Doppler Interferometer wind data: monthly climatologies and seasonal variations,” Journal of Geophysical Research A, vol. 111, no. 10, Article ID A10S03, 2006.
[18]  O. de La Beaujardière, L. Jeong, B. Basu et al., “C/NOFS: a mission to forecast scintillations,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 66, no. 17, pp. 1573–1591, 2004.
[19]  E. Yizengaw, M. B. Moldwin, P. L. Dyson, and T. J. Immel, “Southern Hemisphere ionosphere and plasmasphere response to the interplanetary shock event of 29-31 October 2003,” Journal of Geophysical Research A, vol. 110, no. 9, Article ID A09S30, 2005.
[20]  A. J. Mannucci, B. T. Tsurutani, B. A. Iijima et al., “Dayside global ionospheric response to the major interplanetary events of October 29-30, 2003 "Halloween Storms",” Geophysical Research Letters, vol. 32, no. 12, pp. 1–4, 2005.
[21]  E. Yizengaw, M. B. Moldwin, A. Komjathy, and A. J. Mannucci, “Unusual topside ionospheric density response to the November 2003 superstorm,” Journal of Geophysical Research A, vol. 111, no. 2, Article ID A02308, 2006.
[22]  W. A. Hartman and R. A. Heelis, “Longitudinal variations in the equatorial vertical drift in the topside ionosphere,” Journal of Geophysical Research A, vol. 112, no. 3, Article ID A03305, 2007.
[23]  J. C. Foster, P. J. Erickson, A. J. Coster, J. Goldstein, and F. J. Rich, “Ionospheric signatures of plasmaspheric tails,” Geophysical Research Letters, vol. 29, no. 13, article 1623, 4 pages, 2002.
[24]  E. Yizengaw, J. Dewar, J. MacNeil et al., “The occurrence of ionospheric signatures of plasmaspheric plumes over different longitudinal sectors,” Journal of Geophysical Research A, vol. 113, no. 8, Article ID A08318, 2008.
[25]  R. A. Heelis, J. J. Sojka, M. David, and R. W. Schunk, “Storm time density enhancements in the middle-latitude dayside ionosphere,” Journal of Geophysical Research A, vol. 114, no. 3, Article ID A03315, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133