Ionospheric and atmospheric anomalies registered around the time of strong earthquakes in low-latitude regions are reported now regularly. Majority of these reports have the character of case studies without clear physical mechanism proposed. Here we try to present the general conception of low-latitude effects using the results of the recent author’s publications, including also rethinking the earlier results interpreted basing on recently established background physical mechanisms of anomalies generation. It should be underlined that only processes initiated by earthquake preparation are considered. Segregation of low-latitude regions for special consideration is connected with the important role of ionospheric equatorial anomaly in the seismoionospheric coupling and specific character of low-latitude earthquake initiated effects. Three main specific features can be marked in low-latitude ionospheric anomalies manifestation: the presence of magnetic conjugacy in majority of cases, local longitudinal asymmetry of effects observed in ionosphere in relation to the vertical projection of epicenter onto ionosphere, and equatorial anomaly reaction even on earthquakes outside equatorial anomaly (i.e., 30–40 LAT). The equality of effects morphology regardless they observed over land or over sea implies only one possible explanation that these anomalies are initiated by gaseous emanations from the Earth crust, and radon plays the major role. 1. Introduction Many studies for the ionospheric precursors of earthquakes have been done since 1964 when great Alaska “Good Friday” ( = 9.2) earthquake took place on the 27th of March. History of these studies is described by Pulinets and Boyarchuk [1]. We can consider the starting date of systematic studies of seismo-ionospheric coupling from publication of the book Ionospheric Precursors of the Earthquakes [2]. Pulinets [3] proposed to consider the ionospheric variations stimulated by the earthquake preparation process as one of the constituents of day-to-day ionospheric variability. This statement was questioned in some publications [4, 5]. But after revealing the main phenomenological features of ionospheric precursors [6] and their stable and confident statistical characteristics [7–10] the discussions shifted to the direction of their physical mechanism clarification. The diversity of ionospheric effects manifestation before earthquakes (positive and negative deviations from undisturbed level, local time dependence, longitudinal effect, etc.) produced confusion in heads of physicists, and instead of unitary vision
References
[1]
S. A. Pulinets and K. A. Boyarchuk, Ionospheric Precursors of Earthquakes, Springer, New York, NY, USA, 2004.
[2]
V. A. Liperovsky, O. A. Pokhotelov, and S. A. Shalimov, Ionospheric Precursors of the Earthquakes, Nauka, Moscow, Russia, 1992.
[3]
S. A. Pulinets, “Seismic activity as a source of the ionospheric variability,” Advances in Space Research, vol. 22, no. 6, pp. 903–906, 1998.
[4]
S. S. Kouris, P. Spalla, and B. Zolesi, “Could ionospheric variations be precursors of a seismic event? A short discussion,” Annali di Geofisica, vol. 44, no. 2, pp. 395–402, 2001.
[5]
H. Rishbeth, “Do earthquake precursors really exist?” Eos, vol. 88, no. 29, p. 296, 2007.
[6]
S. A. Pulinets, A. D. Legen'ka, T. V. Gaivoronskaya, and V. K. Depuev, “Main phenomenological features of ionospheric precursors of strong earthquakes,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 65, no. 16–18, pp. 1337–1347, 2003.
[7]
J. Y. Liu, Y. J. Chuo, S. J. Shan et al., “Pre-earthquake ionospheric anomalies registered by continuous GPS TEC measurements,” Annales Geophysicae, vol. 22, no. 5, pp. 1585–1593, 2004.
[8]
J. Y. Liu, Y. I. Chen, Y. J. Chuo, and C. S. Chen, “A statistical investigation of preearthquake ionospheric anomaly,” Journal of Geophysical Research A, vol. 111, no. 5, Article ID A05304, 2006.
[9]
J. Y. Liu, C. H. Chen, Y. I. Chen, W. H. Yang, K. I. Oyama, and K. W. Kuo, “A statistical study of ionospheric earthquake precursors monitored by using equatorial ionization anomaly of GPS TEC in Taiwan during 2001–2007,” Journal of Asian Earth Sciences, vol. 39, no. 1-2, pp. 76–80, 2010.
[10]
M. Parrot, “Statistical analysis of Ionospheric Perturbations Observed by DEMETER in Relation with the Seismic Activity,” Earthquake Science, vol. 24, no. 6, pp. 513–521, 2011.
[11]
V. A. Liperovsky, O. A. Pokhotelov, C. V. Meister, and E. V. Liperovskaya, “Physical models of coupling in the lithosphere-atmosphere-ionosphere system before earthquakes,” Geomagnetism and Aeronomy, vol. 48, no. 6, pp. 795–806, 2008.
[12]
S. A. Pulinets, A. D. Legen'ka, and V. Kh. Depuev, “Pre-seismic effects on the equatorial anomaly,” in 10th International symposium on Equatorial Aeronomy (ISEA '00), Antalya, Turkey, May 2000.
[13]
S. A. Pulinets and A. D. Legen'ka, “Dynamics of the near-equatorial ionosphere prior to strong earthquakes,” Geomagnetism and Aeronomy, vol. 42, no. 2, pp. 227–232, 2002.
[14]
S. A. Pulinets, K. A. Boyarchuk, V. V. Hegai, V. P. Kim, and A. M. Lomonosov, “Quasielectrostatic model of atmosphere-thermosphere-ionosphere coupling,” Advances in Space Research, vol. 26, no. 8, pp. 1209–1218, 2000.
[15]
S. Pulinets and D. Ouzounov, “Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model—an unified concept for earthquake precursors validation,” Journal of Asian Earth Sciences, vol. 41, no. 4-5, pp. 371–382, 2011.
[16]
S. A. Pulinets, “Physical mechanism of the vertical electric field generation over active tectonic faults,” Advances in Space Research, vol. 44, no. 6, pp. 767–773, 2009.
[17]
M. V. Klimenko, V. V. Klimenko, I. E. Zakharenkova, S. A. Pulinets, B. Zhao, and M. N. Tsidilina, “Formation mechanism of great positive TEC disturbances prior to Wenchuan earthquake on May 12, 2008,” Advances in Space Research, vol. 48, no. 3, pp. 488–499, 2011.
[18]
M. V. Klimenko, V. V. Klimenko, I. E. Zakharenkova, and S. A. Pulinets, “Variations of equatorial electrojet as possible seismo-ionospheric precursor at the occurrence of TEC anomalies before strong earthquake,” Advances in Space Research, vol. 49, pp. 509–517, 2012.
[19]
F. Freund, “Toward a unified solid state theory for pre-earthquake signals,” Acta Geophysica, vol. 58, no. 5, pp. 719–766, 2010.
[20]
K. Sekimoto and M. Takayama, “Fundamental processes of corona discharge, surface analysis of traces stained with discharge on brass plate in negative corona,” Journal of the Institute of Electrostatics Japan, vol. 33, no. 1, pp. 38–42, 2009.
[21]
S. A. Pulinets and R. F. Benson, Radio-Frequency Sounders in Space, Review of Radio Science, W. Ross Stone, Ed., Oxford University Press, 1999.
[22]
S. A. Pulinets, A. D. Legen'ka, A. T. Karpachev et al., “The earthquakes prediction possibility on the base of topside sounding data,” IZMIRAN preprint N 34a(981), 25 p., 1991.
[23]
N. P. Benkova, M. G. Deminov, A. T. Karpachev et al., “Longitude features shown by topside sounder data and their importance in ionospheric mapping,” Advances in Space Research, vol. 10, no. 8, pp. 57–66, 1990.
[24]
G. F. Deminova, “Wavelike structure of longitudinal variations of the nighttime equatorial anomaly,” Geomagnetism and Aeronomy, vol. 35, no. 4, pp. 576–579, 1996.
[25]
S. A. Pulinets and V. H. Depuev, “Ionospheric variability around the time of Mammoth Lakes seismic swarm of May 1980 in California,” Proceedings of the IRI Task Force Activity 2003, ICTP Publishing, IC/IR/2004/1, pp. 85–96, 2004.
[26]
S. Kon, M. Nishihashi, and K. Hattori, “Ionospheric anomalies possibly associated with M≥6.0 earthquakes in the Japan area during 1998–2010: case studies and statistical study,” Journal of Asian Earth Sciences, vol. 41, no. 4-5, pp. 410–420, 2011.
[27]
D. Ouzounov, S. Pulinets, A. Romanov et al., “Atmosphere-Ionosphere Response to the M9 Tohoku Earthquake Revealed by Joined Satellite and Ground Observations: Preliminary Results,” Earthquake Science, vol. 24, pp. 557–564, 2011.
[28]
S. A. Pulinets and A. D. Legen'ka, “First simultaneous observations of the topside density variations and VLF emissions before the Irpinia earthquake, November, 23, 1980 in magnetically conjugated regions,” in Proceedings of the International Workshop on Seismo Electromagnetics, pp. 56–59, Chofu, Japan, 1997.
[29]
S. A. Pulinets, P. Biagi, V. Tramutoli, A. D. Legen'ka, and V. K. Depuev, “Irpinia earthquake 23 November 1980—lesson from nature reviled by joint data analysis,” Annals of Geophysics, vol. 50, no. 1, pp. 61–78, 2007.
[30]
S. Pulinets, D. Ouzounov, and M. Parrot, “Conjugated near-equatorial effects registered by DEMETER satellite before Sumatra earthquake M8.7 of March 28, 2005,” in DEMETER Workshop, Toulouse, France, June 2006.
[31]
V. M. Sorokin, “Plasma and electromagnetic effects in the ionosphere related to the dynamics of charged aerosols in the lower atmosphere,” Russian Journal of Physical Chemistry B, vol. 1, no. 2, pp. 138–170, 2007.
[32]
F. T. Freund, I. G. Kulahci, G. Cyr et al., “Air ionization at rock surfaces and pre-earthquake signals,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 71, no. 17-18, pp. 1824–1834, 2009.
[33]
A. A. Namgaladze, M. V. Klimenko, V. V. Klimenko, and I. E. Zakharenkova, “Physical mechanism and mathematical modeling of earthquake ionospheric precursors registered in total electron content,” Geomagnetism and Aeronomy, vol. 49, no. 2, pp. 252–262, 2009.
[34]
C. L. Kuo, J. D. Huba, G. Joyce, and L. C. Lee, “Ionosphere plasma bubbles and density variations induced by pre-earthquake rock currents and associated surface charges,” Journal of Geophysical Research, vol. 116, Article ID A10317, 2011.
[35]
M. J. Rycroft and R. G. Harrison, “Electromagnetic atmosphere-plasma coupling: the global atmospheric electric circuit,” Space Science Reviews. In press.
[36]
C. L. Kuo, J. D. Huba, G. Joyce, and L. C. Lee, “Ionosphere plasma bubbles and density variations induced by pre-earthquake rock currents and associated surface charges,” Journal of Geophysical Research A, vol. 116, no. 10, Article ID A10317, 2011.
[37]
W. A. Hoppel, “Theory of the electrode effect,” Journal of Atmospheric and Terrestrial Physics, vol. 29, no. 6, pp. 709–721, 1967.
[38]
K. A. Boyarchuk, A. V. Karelin, and R. V. Shirokov, Basic Models of the Ionized Atmosphere Kinetics, FGUP “NPP VNIIEM”, Moscow, Russia, 2006.
[39]
K. Qin, L. Wu, and G. Quo, “Multi-parameters thermal anomalies before New Zealand Ms7.0 earthquake,” in Geoscience and Remote Sensing Symposium (IGARSS '11), pp. 2496–2499, 2011.
[40]
L. F. Khilyuk, G. V. Chillingar, J. O. Robertson Jr., and B. Endres, Gas Migration. Events Preceding Earthquakes, Gulf Publiching Company, Houston, Tex, USA, 2000.
[41]
W. S. Broecker, “An application of natural radon to problems in ocean circulation,” in Symposium on Diffusion in Oceans and Fresh Waters, pp. 116–145, Palisades, NY, USA, 1964.
[42]
G. Schumann, “Radon isotopes and daughters in the atmosphere,” Archiv für Meteorologie, Geophysik und Bioklimatologie Serie A, vol. 21, no. 2-3, pp. 149–170, 1972.
[43]
H. Kawabata, H. Narita, K. Harada, S. Tsunogai, and M. Kusakabe, “Air-sea gas transfer velocity in stormy winter estimated from radon deficiency,” Journal of Oceanography, vol. 59, no. 5, pp. 651–661, 2003.
[44]
N. Jacob, D. S. Suresh Babu, and K. Shivanna, “Radon as an indicator of submarine groundwater discharge in coastal regions,” Current Science, vol. 97, no. 9, pp. 1313–1320, 2009.
[45]
S. A. Pulinets, V. G. Bondur, M. N. Tsidilina, and M. V. Gaponova, “Verification of the concept of seismoionospheric coupling under quiet heliogeomagnetic conditions, using the Wenchuan (China) earthquake of May 12, 2008, as an example,” Geomagnetism and Aeronomy, vol. 50, no. 2, pp. 231–242, 2010.
[46]
R. W. Schunk and A. F. Nagy, Ionospheres: Physics, Plasma Physics and Chemistry, Cambridge University Press, Cambridge, UK, 2000.
[47]
H. C. Koons, J. L. Roeder, and P. Rodriguez, “Plasma waves observed inside plasma bubbles in the equatorial F region,” AEROSPACE REPORT NO. TR-98(8570)-1, The Aerospace Corporation Publishing, El Segundo, Calif, USA, pp. 4577–4583, 1988.
[48]
J. Park, K. W. Min, V. P. Kim et al., “Equatorial plasma bubbles with enhanced ion and electron temperatures,” Journal of Geophysical Research A, vol. 113, no. 9, Article ID A09318, 2008.
[49]
C. S. Huang, O. De La Beaujardiere, R. F. Pfaff et al., “Zonal drift of plasma particles inside equatorial plasma bubbles and its relation to the zonal drift of the bubble structure,” Journal of Geophysical Research A, vol. 115, no. 7, Article ID A07316, 2010.
[50]
S. A. Pulinets and K. G. Tsybulya, “Unique variations of the total electron content in the preparation period of Haitian earthquake (M7.9) on January 12, 2010,” Geomagnetism and Aeronomy, vol. 50, no. 5, pp. 686–689, 2010.
[51]
H. Rishbeth, “Dynamics of the equatorial F-region,” Journal of Atmospheric and Terrestrial Physics, vol. 39, no. 9-10, pp. 1159–1168, 1977.