全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Accounting for Antenna in Half-Space Fresnel Coefficient Estimation

DOI: 10.1155/2012/138458

Full-Text   Cite this paper   Add to My Lib

Abstract:

The problem of retrieving the Fresnel reflection coefficients of a half-space medium starting from measurements collected under a reflection mode multistatic configuration is dealt with. According to our previous results, reflection coefficient estimation is cast as the inversion of linear operator. However, here, we take a step ahead towards more realistic scenarios as the role of antennas (both transmitting and receiving) is embodied in the estimation procedure. Numerical results are presented to show the effectiveness of the method for different types of half-space media. 1. Introduction Subsurface imaging problem is relevant in several applicative contexts that range from geophysical to civil engineering applications [1]. In this framework, regardless of the imaging algorithm one may want to use, the knowledge of soil parameters is necessary in order to obtain properly focused images and free from artifacts proliferation [2]. By contrast, in realistic scenarios, such parameters are generally unknown or, at best, known with some degree of uncertainty. Therefore, a soil parameter estimation procedure must be run before imaging. Many procedures for estimating soil parameters are widespread in the literature. Reflectometry methods are very common [3]. There are methods which rely on fitting the moveout of hyperbolic diffraction pattern or measure travel time to a scatterer buried at known depth [4]. Other methods exploit different offset data and perform velocity or amplitude analysis to gather soil properties [5, 6]. Iterative imaging instead identifies soil parameters as those which return the more focalized reconstruction of a cooperative target [7]. Finally, further methods first retrieve reflection coefficient and then infer the soil properties by minimizing a nonlinear cost function by using optimization procedure [8]. Most of the methods quoted above require far zone approximation, so that asymptotic ray approximation works and generally assume soil as a homogeneous (at least transversally) half space. Moreover, time domain data, equivalently multifrequency data, are employed. In particular, this requires dealing with a non-linear inversions when the reflection coefficient is used to infer soil properties [8]. As well known, non-linear inversion are generally computationally demanding and can suffer from reliability problems due to the occurrence of false solutions. In these cases, one can take advantage from a priori information about the soil which allows to reduce the number searched for unknowns. However, this entails that soil dispersive law

References

[1]  D. Daniels, Ground Penetrating Radar, IEE Press, London, UK, 2nd edition, 2004.
[2]  F. Soldovieri and R. Solimene, “Ground penetrating radar subsurface imaging of buried objects,” in Radar Technology, G. Kouemou, Ed., In-Tech, 2010.
[3]  D. A. Robinson, “Measurement of the solid dielectric permittivity of clay minerals and granular samples using a time-domain reflectometry immersion method,” Vadose Zone Journal, vol. 3, no. 2, pp. 705–713, 2004.
[4]  A. P. Annan, Ground Penetrating Radar Workshop Notes, Sensors & Software, Mississauga, Canada, 2001.
[5]  X. Zeng, G. A. McMechan, and T. Xu, “Synthesis of amplitude-versus-offset variations in ground-penetrating radar data,” Geophysics, vol. 65, no. 1, pp. 113–125, 2000.
[6]  J. Deparis and S. Garambois, “On the use of dispersive APVO GPR curves for thin-bed properties estimation: theory and application to fracture characterization,” Geophysics, vol. 74, no. 1, pp. J1–J12, 2009.
[7]  F. Soldovieri, G. Prisco, and R. Persico, “A strategy for the determination of the dielectric permittivity of a lossy soil exploiting GPR surface measurements and a cooperative target,” Journal of Applied Geophysics, vol. 67, no. 4, pp. 288–295, 2009.
[8]  S. Lambot, E. C. Slob, I. van den Bosch, B. Stockbroeckx, B. Scheers, and M. Vanclooster, “Estimating soil electric properties from monostatic ground-penetrating radar signal inversion in the frequency domain,” Water Resources Research, vol. 40, no. 4, pp. W042051–W0420512, 2004.
[9]  P. Meincke and T. B. Hansen, “Plane-wave characterization of antennas close to a planar interface,” IEEE Transactions on Geoscience and Remote Sensing, vol. 42, no. 6, pp. 1222–1232, 2004.
[10]  R. Solimene, F. Soldovieri, and A. D'Alterio, “Determination of the fresnel reflection coefficient of a half-space for medium estimation purposes,” Progress in Electromagnetics Research B, no. 27, pp. 61–82, 2011.
[11]  R. Persico, F. Soldovieri, and G. Leone, “A microwave tomographic imaging approach for multibistatic configuration: the choice of the frequency step,” IEEE Transactions on Instrumentation and Measurement, vol. 55, no. 6, pp. 1926–1934, 2006.
[12]  R. Solimene, F. Ahmad, and F. Soldovieri, “A novel CS-TSVD strategy to perform data reduction in linear inverse scattering problems,” IEEE Geoscience and Remote Sensing Letters, vol. 9, no. 5, pp. 881–885, 2012.
[13]  R. Solimene, A. D'Alterio, and F. Soldovieri, “Determining Fresnel reflection coefficients in 3D half-space geometry by GPR multistatic data,” Near Surface Geophysics, vol. 9, no. 3, pp. 265–275, 2011.
[14]  R. Solimene, A. D'Alterio, and F. Soldovieri, “Half-space estimation by time gating based strategy,” in Proceedings of the 13th Internarional Conference on Ground Penetrating Radar (GPR '10), pp. 683–687, Lecce, Italy, June 2010.
[15]  R. E. Collin, Antennas and Radiowave Propagation, McGraw-Hill, New York, NY, USA, 1985.
[16]  M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging, IOP, Bristol, UK, 1998.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133