全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Geophysical Surveys at Khirbat Faynan, an Ancient Mound Site in Southern Jordan

DOI: 10.1155/2012/432823

Full-Text   Cite this paper   Add to My Lib

Abstract:

Faynan in Jordan contains the largest copper ore resource zone in the southern Levant (Israel, Jordan, Palestinian territories, Lebanon, Syria, and the Sinai Peninsula). Located 50?km southeast of the Dead Sea, it is home to one of the world’s best-preserved ancient mining and metallurgy districts encompassing an area of ca. 400?km2. During the past three decades, archaeologists have carried out numerous excavations and surveys recording hundreds of mines and sites related to metallurgical activities that span the past 10 millennia. Khirbat Faynan (Biblical Punon), is situated in the main Faynan Valley and is the largest (ca. 15?ha) settlement site in the region and has remained unexcavated until 2011. As Jordan’s most southern mound site with indications of widespread ancient architecture, we employed a suite of noninvasive geophysical survey methods to identify areas suitable for excavation. Earlier geophysical surveys were carried out in the Faynan region by our team in the late 1990s when only EMI (electromagnetic induction) proved successful, but with relatively poor resolution. As reported here, by 2011, improvements in data processing software and 3D ERT (electrical resistivity tomography) sampling protocols made it possible to greatly improve the application of noninvasive geophysical surveying in this hyperarid zone. 1. Introduction Improvements in processing software and sampling protocols for shallow geophysical prospecting make it a key tool for initiating archaeological exploration. In terms of research design, geophysics have increasingly become an essential part of the methodology for planning archaeological excavation in a number of unexplored regions around the world [1, 2]. As part of a long-term archaeological study of the role of mining and metallurgy in the evolution of societies from the Neolithic period (ca. 8000?BC–6000?BC) to Islamic times (7th c. CE–early 20th c. CE) in Jordan’s Faynan copper ore district, the University of California, San Diego (UCSD) Edom Lowlands Regional Archaeology Project (ELRAP) conducted intensive systematic surveys and large-scale excavations at sites spanning all these periods. From 2002–2010, the primary research focus was on the formative Iron Age (ca. 1200–500?BCE) when the first historical state-level societies evolved in this part of the eastern Mediterranean and the ancient Near East’s first industrial revolution took place. Large-scale excavations were carried out at Khirbat en-Nahas (ca. 10 hectares), the largest copper ore processing and smelting site in the region (cf. [3]), smaller

References

[1]  R. Slatt, W. C. King, J. Molyneux et al., “Tribute to Dr. Alan Witten,” Earth Scientist, pp. 9–23, 2005.
[2]  A. J. Witten, Handbook of Geophysics and Archaeology, Equinox Pub, 2006.
[3]  T. E. Levy, T. Higham, C. B. Ramsey et al., “High-precision radiocarbon dating and historical biblical archaeology in southern Jordan,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 43, pp. 16460–16465, 2008.
[4]  E. Ben-Yosef, T. E. Levy, T. Higham, M. Najjar, and L. Tauxe, “The beginning of Iron Age copper production in the southern Levant: new evidence from Khirbat al-Jariya, Faynan, Jordan,” Antiquity, vol. 84, no. 325, pp. 724–746, 2010.
[5]  E. Ben-Yosef, T. E. Levy, and M. Najjar, “Rās al-Miyāh fortresses: new discoveries at one of the gateways to the iron age copper production district of Faynan, Jordan,” pp. 832–841, 2009.
[6]  E. Ben-Yosef, T. E. Levy, and M. Najjar, “New iron age copper-mine fields discovered in southern Jordan,” Near Eastern Archaeology, vol. 72, no. 2, pp. 98–101, 2009.
[7]  T. E. Levy, E. Ben-Yosef, and M. Najjar, “New perspectives on iron age copper production and society in the Faynan Region, Jordan,” in Eastern Mediterranean Metallurgy and Metalwork in the Second Millenium BC, V. Kassianidou, Ed., Oxbox Books, Oxford, UK, 2012.
[8]  G. Barker, D. D. Gilbertson, and D. J. Mattingly, Archaeology and Desertification: The Wadi Faynan Landscape Survey, Southern Jordan, Oxbow, 2007.
[9]  C. E. Cordova, Millennial Landscape Change in Jordan: Geoarchaeology and Cultural Ecology, The University of Arizona Press, 2007.
[10]  A. Hauptmann, The Archaeometallurgy of Copper: Evidence from Faynan, Jordan, Springer, 2007.
[11]  J. P. Grattan, D. D. Gilbertson, and C. O. Hunt, “The local and global dimensions of metalliferous pollution derived from a reconstruction of an eight thousand year record of copper smelting and mining at a desert-mountain frontier in southern Jordan,” Journal of Archaeological Science, vol. 34, no. 1, pp. 83–110, 2007.
[12]  C. O. Hunt, D. D. Gilbertson, and H. A. El-Rishi, “An 8000-year history of landscape, climate, and copper exploitation in the Middle East: the Wadi Faynan and the Wadi Dana National Reserve in southern Jordan,” Journal of Archaeological Science, vol. 34, no. 8, pp. 1306–1338, 2007.
[13]  B. W. Bevan, “Geophysical exploration for archaeology: an introduction to geophysical exploration,” Midwest Archaeological Center Special Report 1, U.S. Department of the Interior, National Park Service, Lincoln, Neb, USA, 1998.
[14]  L. B. Conyers and D. Goodman, Ground-Penetrating Radar: An Introduction for Archaeologists, AltaMira Press, 1997.
[15]  C. Gaffney, “Detecting trends in the prediction of the buried past: a review of geophysical techniques in archaeology,” Archaeometry, vol. 50, no. 2, pp. 313–336, 2008.
[16]  K. L. Kvamme, “Geophysical surveys as landscape archaeology,” American Antiquity, vol. 68, no. 3, pp. 435–457, 2003.
[17]  A. J. Witten, T. E. Levy, R. B. Adams, and I. Won, “Geophysical surveys in the Jebel Hamrat Fidan, Jordan,” Geoarchaeology, vol. 15, no. 2, pp. 135–150, 2000.
[18]  D. Simpson, A. Lehouck, M. Van Meirvenne, J. Bourgeois, E. Thoen, and J. Vervloet, “Geoarchaeological prospection of a medieval manor in the Dutch polders using an electromagnetic induction sensor in combination with soil augerings,” Geoarchaeology, vol. 23, no. 2, pp. 305–319, 2008.
[19]  A. Tabbagh, “Applications and advantages of the Slingram electromagnetic method for archaeological prospecting,” Geophysics, vol. 51, no. 3, pp. 576–584, 1986.
[20]  B. Frohlich and W. J. Lancaster, “Electromagnetic surveying in current Middle Eastern archaeology: application and evaluation.,” Geophysics, vol. 51, no. 7, pp. 1414–1425, 1986.
[21]  A. Witten, G. Calvert, B. Witten, and T. Levy, “Magnetic and electromagnetic induction studies at archaeological sites in Southwestern Jordan,” Journal of Environmental and Engineering Geophysics, vol. 8, no. 3, pp. 209–215, 2003.
[22]  M. Dabas, A. Hesse, and J. Tabbagh, “Experimental resistivity survey at Wroxeter archaeological site with a fast and light recording device,” Archaeological Prospection, vol. 7, no. 2, pp. 107–118, 2000.
[23]  I. Scollar, A. Tabbagh, A. Hesse, and I. Herzog, Archaeological Prospecting and Remote Sensing, Cambridge University Press, Cambridge, UK, 1990.
[24]  M. Drahor, M. Berge, and ?. Caner, “Integrated geophysical surveys for the subsurface mapping of buried structures under and surrounding of the Agios Voukolos Church in Izmir, Turkey,” Journal of Archaeological Science, vol. 38, no. 9, pp. 2231–2242, 2001.
[25]  S. Negri, G. Leucci, and F. Mazzone, “High resolution 3D ERT to help GPR data interpretation for researching archaeological items in a geologically complex subsurface,” Journal of Applied Geophysics, vol. 65, no. 3-4, pp. 111–120, 2008.
[26]  G. N. Tsokas, P. I. Tsourlos, G. Vargemezis, and M. Novack, “Non-destructive electrical resistivity tomography for indoor investigation: the case of Kapnikarea Church in Athens,” Archaeological Prospection, vol. 15, no. 1, pp. 47–61, 2008.
[27]  P. I. Tsourlos and G. N. Tsokas, “Non-destructive electrical resistivity tomography survey at the South Walls of the Acropolis of Athens,” Archaeological Prospection, vol. 18, no. 3, pp. 173–186, 2011.
[28]  J. Casana, J. T. Herrmann, and A. Fogel, “Deep subsurface geophysical prospection at Tell Qarqur, Syria,” Archaeological Prospection, vol. 15, no. 3, pp. 207–225, 2008.
[29]  A. Osella, M. de la Vega, and E. Lascano, “3D electrical imaging of an archaeological site using electrical and electromagnetic methods,” Geophysics, vol. 70, no. 4, pp. G101–G107, 2005.
[30]  G. Matheron, “Principles of geostatistics,” Economic Geology, vol. 58, no. 8, pp. 1246–1266, 1963.
[31]  T. E. Levy, M. Najjar, A. D. Gidding et al., “The 2011 Edom Lowlands Regional Archaeology Project (ELRAP): Excavations and Surveys in the Faynan Copper Ore District, Jordan,” Annual of the Department of Antiquities of Jordan.
[32]  Z. Bing and S. A. Greenhalgh, “Finite element three-dimensional direct current resistivity modelling: accuracy and efficiency considerations,” Geophysical Journal International, vol. 145, no. 3, pp. 679–688, 2001.
[33]  D. J. LaBrecque, M. Miletto, W. Daily, A. Ramirez, and E. Owen, “The effects of noise on Occam's inversion of resistivity tomography data,” Geophysics, vol. 61, no. 2, pp. 538–548, 1996.
[34]  G. Morelli and D. J. Labrecque, “Advances in ERT inverse modeling,” European Journal of Environmental and Engineering Geophysics, vol. 1, no. 2, pp. 171–186, 1996.
[35]  T. Levy, V. Petrovic, T. Wypych et al., On-Site Digital Archaeology 3.0 and Cyber-Archaeology: Into the Future of the Past–New Developments, Delivery and the Creation of a Data Avalanche, Introduction to Cyber-Archaeology, Archaeopress, Oxford, UK, 2010.
[36]  P. De Smedt, M. Van Meirvenne, E. Meerschman et al., “Reconstructing palaeochannel morphology with a mobile multicoil electromagnetic induction sensor,” Geomorphology, vol. 130, no. 3-4, pp. 136–141, 2011.
[37]  J. Leckebusch, “Ground-penetrating radar: a modern three-dimensional prospection method,” Archaeological Prospection, vol. 10, no. 4, pp. 213–240, 2003.
[38]  A. Novo, M. Grasmueck, D. Viggiano, and H. Lorenzo, “3D GPR in archaeology: what can be gained from dense data acquisition and processing,” in Proceedings of the 12th International Conference on Ground Penetrating Radar, pp. 16–19, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133