We propose an easy-to-use procedure of “PSI-based rapid mapping and deformation analysis,” to effectively exploit Persistent Scatterer Interferometry (PSI) for multispatial/temporal hazard assessment of cultural heritage and rural sites, update the condition report at the scale of entire site and single building, and address the conservation strategies. Advantages and drawbacks of the methodology are critically discussed based on feasibility tests performed over Pitigliano and Bivigliano, respectively, located in Southern and Northern Tuscany, Italy, and representative of hilltop historic towns and countryside settlements chronically affected by natural hazards. We radar-interpreted ERS-1/2 (1992–2000) and ENVISAT (2003–2010) datasets, already processed, respectively with the Permanent Scatterers (PSs) and Persistent Scatterers Pairs (PSPs) techniques, and assigned the levels of conservation criticality for both the sites. The PSI analysis allowed the zoning of the most unstable sectors of Pitigliano and showed a good agreement with the most updated hazard assessment of the cliff. The reconstruction of past/recent deformation patterns over Bivigliano confirmed the criticality for the Church of San Romolo, supporting the hypothesis of a correlation with local landslide phenomena, as also perceived from the annual motions observed over the entire site, where several landslide bodies are mapped. 1. Introduction One of the main challenges in conducting a technological transfer process consists in communicating developments and achievements of science to the potential stakeholders, to effectively contribute to the building and strengthening of their capabilities in the use of new technologies for the specific fields of application. This issue is currently particularly relevant in the perspective of spreading and encouraging the use of satellite radar data for deformation analyses, not only in geological and environmental applications but also in the management and conservation of built heritage in cultural and rural sites. In this regard, in the last decades, the standard approach of Synthetic Aperture Radar Interferometry (InSAR) [1, 2] has increasingly found successful implementation in ground motions monitoring and deformation analyses at multiple scales, mainly relating to natural hazard events [3–6], geological processes [7, 8], and human-induced phenomena [9, 10]. But a significant improvement, especially for analyses over urbanized areas, infrastructure, and human settlements [11–14], has been achieved with the multi-interferogram approaches referred
References
[1]
D. Massonnet and K. L. Feigl, “Radar interferometry and its application to changes in the earth's surface,” Reviews of Geophysics, vol. 36, no. 4, pp. 441–500, 1998.
[2]
P. A. Rosen, S. Hensley, I. R. Joughin et al., “Synthetic aperture radar Interferometry,” Proceedings of the IEEE, vol. 88, no. 3, pp. 333–382, 2000.
[3]
D. Massonnet, K. Feigl, M. Rossi, and F. Adragna, “Radar interferometric mapping of deformation in the year after the Landers earthquake,” Nature, vol. 369, no. 6477, pp. 227–230, 1994.
[4]
C. Squarzoni, C. Delacourt, and P. Allemand, “Nine years of spatial and temporal evolution of the La Valette landslide observed by SAR interferometry,” Engineering Geology, vol. 68, no. 1-2, pp. 53–66, 2003.
[5]
A. M. Goudarzi, T. Woldai, and V. A. Tolpekin, “Surface deformation caused by April 6th 2009 earthquake in L'Aquila (Italy): a comparative analysis from ENVISAT ASAR, ALOS PALSAR and ASTER,” International Journal of Applied Earth Observation and Geoinformation, vol. 13, no. 5, pp. 801–811, 2011.
[6]
S. Bianchini, F. Cigna, G. Righini, C. Proietti, and N. Casagli, “Landslide HotSpot mapping by means of persistent scatterer interferometry,” Environmental Earth Sciences. In press.
[7]
H. Rott and T. Nagler, “The contribution of radar interferometry to the assessment of landslide hazards,” Advances in Space Research, vol. 37, no. 4, pp. 710–719, 2006.
[8]
F. Gutiérrez, J. P. Galve, P. Lucha, C. Casta?eda, J. Bonachea, and J. Guerrero, “Integrating geomorphological mapping, trenching, InSAR and GPR for the identification and characterization of sinkholes: a review and application in the mantled evaporite karst of the Ebro Valley (NE Spain),” Geomorphology, vol. 134, no. 1-2, pp. 144–156, 2011.
[9]
S. Stramondo, F. Bozzano, F. Marra et al., “Subsidence induced by urbanisation in the city of Rome detected by advanced InSAR technique and geotechnical investigations,” Remote Sensing of Environment, vol. 112, no. 6, pp. 3160–3172, 2008.
[10]
F. Cigna, B. Osmano?lu, E. Cabral-Cano et al., “Monitoring land subsidence and its induced geological hazard with synthetic aperture radar interferometry: a case study in Morelia, Mexico,” Remote Sensing of Environment, vol. 117, pp. 146–161, 2012.
[11]
M. Crosetto, O. Monserrat, and G. Herrera, “Urban applications of persistent scatterer interferometry,” Radar Remote Sensing of Urban Areas, Remote Sensing and Digital Image Processing, vol. 15, pp. 233–248, 2010.
[12]
F. Cigna, C. Del Ventisette, V. Liguori, and N. Casagli, “Advanced radar-interpretation of InSAR time series for mapping and characterization of geological processes,” Natural Hazards and Earth System Science, vol. 11, no. 3, pp. 865–881, 2011.
[13]
G. Gigli, W. Frodella, F. Mugnai et al., “Instability mechanisms affecting cultural heritage sites in the Maltese Archipelago,” Natural Hazards and Earth System Sciences, vol. 12, no. 6, pp. 1883–1903, 2012.
[14]
P. Teatini, L. Tosi, T. Strozzi et al., “Resolving land subsidence within the Venice Lagoon by persistent scatterer SAR interferometry,” Physics and Chemistry of the Earth, Parts A/B/C, vol. 40-41, pp. 72–79, 2012.
[15]
M. Costantini, A. Iodice, L. Magnapane, and L. Pietranera, “Monitoring terrain movements by means of sparse SAR differential interferometric measurements,” in Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS'00), pp. 3225–3227, Honolulu, Hawaii, USA, July 2000.
[16]
A. Ferretti, C. Prati, and F. Rocca, “Permanent scatterers in SAR interferometry,” IEEE Transactions on Geoscience and Remote Sensing, vol. 39, no. 1, pp. 8–20, 2001.
[17]
A. Ferretti, A. Fumagalli, F. Novali, C. Prati, F. Rocca, and A. Rucci, “A new algorithm for processing interferometric data-stacks: SqueeSAR,” IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 9, pp. 3460–3470, 2011.
[18]
C. Werner, U. Wegmüller, T. Strozzi, and A. Wiesmann, “Interferometric point target analysis for deformation mapping,” in Proceedings of the IGARSS: Learning From Earth's Shapes and Colours, pp. 4362–4364, Toulouse, France, July 2003.
[19]
A. Hooper, H. Zebker, P. Segall, and B. Kampes, “A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers,” Geophysical Research Letters, vol. 31, no. 23, Article ID L23611, 5 pages, 2004.
[20]
D. Tapete, R. Fanti, R. Cecchi, P. Petrangeli, and N. Casagli, “Satellite radar interferometry for monitoring and early-stage warning of structural instability in archaeological sites,” Journal of Geophysics and Engineering, vol. 9, pp. S10–S25, 2012.
[21]
The Terrafirma Atlas, “Terrain-motion across Europe. A compendium of results produced by the European space agency GMES service element project Terrafirma 2003–2009,” 94 pages, June 2009, http://esamultimedia.esa.int/multimedia/publications/TerrafirmaAtlas/pageflip.html.
[22]
L. Bateson, M. Cuevas, M. Crosetto, F. Cigna, and M. Schijf, D3. 5: PanGeo Production Manual Version 1, 2012, http://www.pangeoproject.eu/sites/default/files/pangeo_other/D3.5_PanGeo_Production_Manual_v1_of_2nd_April_2012.pdf.
[23]
National Geoportal, “Extraordinary plan of environmental remote sensing,” 2012, http://www.pcn.minambiente.it/GN/progetto_pst.php?lan=en.
[24]
A. Trigila, C. Cacace, C. Iadanza, S. Del Conte, D. Spizzichino, and S. Cespa, “Cultural heritage, landslide risk and remote sensing in Italy,” in The Second World Landslide Forum—Abstract Book, F. Catani, C. Margottini, A. Trigila, and C. Iadanza, Eds., p. 603, FAO, Rome, Italy, 2011, ISPRA, WLF2-2011-0397.
[25]
G. Savio, A. Ferretti, F. Novali, S. Musazzi, C. Prati, and F. Rocca, “PSInSAR validation by means of a blind experiment using dihedral reflectors,” in Proceedings of FRINGE 2005 Workshop, pp. 1–6, Frascati, Italy, December 2005.
[26]
D. Perissin and A. Ferretti, “Urban-target recognition by means of repeated spaceborne SAR images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 45, no. 12, pp. 4043–4058, 2007.
[27]
G. Zeni, M. Bonano, F. Casu et al., “Long-term deformation analysis of historical buildings through the advanced SBAS-DInSAR technique: the case study of the city of Rome, Italy,” Journal of Geophysics and Engineering, vol. 8, no. 3, pp. S1–S12, 2011.
[28]
D. Tapete and F. Cigna, “Site-specific analysis of deformation patterns on archaeological heritage by satellite radar interferometry,” in 20th International Materials Research Congress, Symposium 8 Cultural Heritage and Archaeological Issues in Materials Science, vol. 1374 of MRS Proceedings, Cambridge University Press, 2012.
[29]
F. Cigna, S. Bianchini, and N. Casagli, “How to assess landslide activity and intensity with persistent scatterer interferometry (PSI): the PSI-based matrix approach,” Landslides. In press.
[30]
C. Colesanti and J. Wasowski, “Investigating landslides with space-borne synthetic aperture radar (SAR) interferometry,” Engineering Geology, vol. 88, no. 3-4, pp. 173–199, 2006.
[31]
National Geoportal, “Progetto persistent scatterers interferometry,” 2012, http://www.pcn.minambiente.it/GN/progetto_psi.php?lan=en.
[32]
L. Vezzoli, “Stratigraphy of the latera volcanic complex: proposals for a new nomenclature,” Periodico di Mineralogia, vol. 56, no. 2-3, pp. 89–110, 1987.
[33]
S. Conticelli, L. Francalanci, P. Manetti, and A. Peccerillo, “Evolution of Latera Volcano, Vulsinian district (central Italy): stratigraphical and petrological data,” Periodico di Mineralogia, vol. 56, no. 2-3, pp. 175–199, 1987.
[34]
P. Canuti, N. Casagli, R. Fanti, A. Iotti, E. Pecchioni, and A. P. Santo, “Rock weathering and failure of the “Tomba della Sirena” in the Etruscan necropolis of Sovana (Italy),” Journal of Cultural Heritage, vol. 5, no. 3, pp. 323–330, 2004.
[35]
R. Fanti, G. Gigli, L. Lombardi, D. Tapete, and P. Canuti, “Terrestrial laser scanning for rockfall stability analysis in the cultural heritage site of Pitigliano (Italy),” Landslides. In press.
[36]
P. Canuti and R. Fanti, “The instability of Pitigliano's cliff: the role of the anthropic cavities, the geotechnical studies and the monitoring system,” in Conservation and Sustainable Development of the Tuff Towns. An Exploration of Pitigliano, World Monuments Fund Publication, Civita di Bagnoregio, Italy, 2007, http://www.wmf.org/sites/default/files/wmf_publication/tuff_canuti-en.pdf.
[37]
Archivio Galilei 18 ins. 1, Memorie per Pratolino Frana di Bivigliano dell'agosto 1729.