The M s 8.0 Wenchuan earthquake occurred along the Longmenshan Faults in China and was a great disaster. Most of the damage and casualties during the quake were concentrated along surface rupture zones: the 240-km-long Beichuan-Yingxiu Fault and the 70-km-long Jiangyou-Guanxian Fault. Although the Longmenshan Faults are well known and studied, the surface Fault ruptures were not considered in mitigation planning, and the associated ground-motion hazard was therefore underestimated. Not considering Fault rupture and underestimating ground-motion hazard contributed to the disastrous effects of the earthquake. The lesson from the Wenchuan earthquake disaster is that the fault rupture hazard must be assessed and considered in mitigation. Furthermore, the deterministic approach is more appropriate for fault rupture hazard assessment than the probabilistic approach. 1. Introduction On May 12, 2008, the Ms 8.0 Wenchuan earthquake in China caused many houses to collapse and huge casualties. It occurred in the Longmenshan thrust nappe tectonic zone, the junction of the Bayan Har block on the Tibetan Plateau and the South China block in eastern China (Figure 1). The zone consisted of a front range fault (Jiangyou-Guanxian Fault), a central fault (Beichuan-Yingxiu Fault), a back range fault (Wenchuan-Maoxian Fault), and their related folds (Figure 1). The zone has experienced strong tectonic activity and intensively active faults, making it a strong earthquake-prone area since it is not only the junction of the Bayan Har and South China blocks, but also a part of the north-south seismic tectonic zones on the Chinese mainland. The MS 8.0 Wenchuan earthquake was the result of the Longmenshan thrust nappe pushing southeast, accompanied by clockwise shearing. Figure 1: Seismotectonics and distribution of historical earthquakes of the Wenchuan area. (1) Holocene active fault. (2) Late Pleistocene active fault. (3) Early and middle Pleistocene active fault. (4) Buried active fault. (5) Normal fault. (6) Strike-slip fault. (7) Ms 8.0 earthquake surface ruptures. (8) Epicenter of the Ms 8.0 earthquake. (9) Historical earthquakes ranging from M s 4.7 to 5.0. (10) Historical earthquakes ranging from M s 4.7 to 5.0. (11) Figure location. The Wenchuan earthquake was a great disaster, causing more than $110 billion in damage and killing about 90,000 people [1]. There were many reasons for this disaster, such as large magnitude (Ms 8.0), high mountains and steep slopes, and dense population. However, one of the main reasons was that the seismic hazards, surface fault rupture,
References
[1]
X. W. Xu, X. Z. Wen, J. Q. Ye et al., “The MS8.0 Wenchuan earthquake surface ruptures and its seismogenic structure,” Seismology and Geology, vol. 30, no. 3, pp. 597–629, 2008.
[2]
Y. K. Ran, X. Shi, H. Wang et al., “The maximum coseismic vertical surface displacement and surface deformation pattern accompanying the Ms 8.0 Wenchuan earthquake,” Chinese Science Bulletin, vol. 55, no. 9, pp. 841–850, 2010.
[3]
Y. Du, F. R. Xie, X. L. Zhang, and Z. J. Jing, “The mechanics of fault slip of Ms8.0 Wenchuan earthquake,” Chinese Journal of Geophysics, vol. 52, no. 2, pp. 464–473, 2009 (Chinese).
[4]
People's Republic of China National Standard, Seismic Ground Motion Parameter Zonation Map of China, China Standard Press, 2001, GB 18306–2001.
[5]
C. A. Cornell, “Engineering seismic risk analysis,” Bulletin of the Seismological Society of America, vol. 58, pp. 1583–1606, 1968.
[6]
K. J. Coppersmith and R. R. Youngs, “Data needs for probabilistic fault displacement hazard analysis,” Journal of Geodynamics, vol. 29, no. 3–5, pp. 329–343, 2000.
[7]
E. L. Krinitzsky, “Deterministic versus probabilistic seismic hazard analysis for critical structures,” Engineering Geology, vol. 40, no. 1-2, pp. 1–7, 1995.
[8]
E. L. Krinitzsky, “How to obtain earthquake ground motions for engineering design,” Engineering Geology, vol. 65, no. 1, pp. 1–16, 2002.
[9]
Z. Wang, “Comment on “sigma: issues, insights, and challenges” by Fleur O. Strasser, Norman A. Abrahamson, and Julian J. Bommer,” Seismological Research Letters, vol. 80, pp. 491–493, 2009.
[10]
Z. Wang, “Seismic hazard assessment: issues and alternatives,” Pure and Applied Geophysics, vol. 168, no. 1-2, pp. 11–25, 2011.
[11]
J. G. Anderson and J. N. Brune, “Probabilistic seismic hazard analysis without the ergodic assumption,” Seismological Research Letters, vol. 70, no. 1, pp. 19–28, 1999.
[12]
Z. Wang and C. Cobb, “A critque of probablistic versus deterministic seismic hazard analysis with special reference to the new mardid seismic zone,” in Recent Advances in North American Paleoseismology and Neotectonics East of Rockies, R. Cox, O. Boyd, and M. Tuttle, Eds., Geological Society of America Special Paper.
[13]
Z. Wang and M. Lu, “A short note on ground-motion recordings from the M7. 9 Wenchuan, China, earthquake and ground-motion prediction equations in the central and eastern United States,” Seismological Research Letters, vol. 82, pp. 731–733, 2011.
[14]
L. Mualchin, “History of modern earthquake hazard mapping and assessment in California using a deterministic or scenario approach,” Pure and Applied Geophysics, vol. 168, no. 3-4, pp. 383–407, 2011.
[15]
Building Seismic Safety Council, NEHRP Recommended Provisions for Seismic Regulations for New Buildings, Federal Emergency Management Agency, 2009, FEMA P-750.
[16]
Z. Wang, E. W. Woolery, B. Shi, and I. E. Harik, “Seismic hazard maps and time histories from earthquakes affecting Kentucky,” Research Report KTC-07-06/SPR246-02-6F, University of Kentucky, Kentucky Transportation Center, 2007.
[17]
F. R. Xie, X. F. Cui, J. T. Zhao, Q. C. Chen, and H. Li, “Regional division of the recent tectonic stress field in China and adjacent areas,” Acta Geophysica Sinica, vol. 47, no. 4, pp. 654–662, 2004.
[18]
K. Irikura and H. Miyake, “Recipe for predicting strong ground motion from crustal earthquake scenarios,” Pure and Applied Geophysics, vol. 168, no. 1-2, pp. 85–104, 2011.
[19]
E. Zuccolo, F. Vaccari, A. Peresan, and G. F. Panza, “Neo-deterministic and probabilistic seismic hazard assessments: a comparison over the italian territory,” Pure and Applied Geophysics, vol. 168, no. 1-2, pp. 69–83, 2011.
[20]
N. Abrahamson, “Non-ergodic models for probabilistic fault rupture hazard,” in Seismological Society of America Annual Meeting, San Diego, Calif, USA, April 2012.
[21]
G. Carver, G. Plafker, M. Metz et al., “Surface rupture on the Denali Fault interpreted from tree damage during the 1912 Delta river Mw 7.2–7.4 earthquake: implications for the 2002 Denali Fault earthquake slip distribution,” Bulletin of the Seismological Society of America, vol. 94, no. 6, pp. S58–S71, 2004.