全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

De Novo Transcriptome Assembly and Differential Gene Expression Profiling of Three Capra hircus Skin Types during Anagen of the Hair Growth Cycle

DOI: 10.1155/2013/269191

Full-Text   Cite this paper   Add to My Lib

Abstract:

Despite that goat is one of the best nonmodel systems for villus growth studies and hair biology, limited gene resources associated with skin or hair follicles are available. In the present study, using Illumina/Solexa sequencing technology, we de novo assembled 130 million mRNA-Seq reads into a total of 49,115 contigs. Searching public databases revealed that about 45% of the total contigs can be annotated as known proteins, indicating that some of the assembled contigs may have previously uncharacterized functions. Functional classification by KOG and GO showed that activities associated with metabolism are predominant in goat skin during anagen phase. Many signaling pathways was also created based on the mapping of assembled contigs to the KEGG pathway database, some of which have been previously demonstrated to have diverse roles in hair follicle and hair shaft formation. Furthermore, gene expression profiling of three skin types identified ~6,300 transcript-derived contigs that are differentially expressed. These genes mainly enriched in the functional cluster associated with cell cycle and cell division. The large contig catalogue as well as the genes which were differentially expressed in different skin types provide valuable candidates for further characterization of gene functions. 1. Introduction Inner Mongolia Cashmere Goat (Capra hircus, IMCG) is a diploid ( ) mammal that belongs to the family of Bovidae. It plays an important role in the world animal fiber industry because it can produce high quality underhair (cashmere is the commercial name) and is one of the world’s largest breeding groups. Cashmere produced by IMCG, which is of a small diameter (14–18?μm) and is soft to touch, is grown from the secondary hair follicle (HF) of the body skin [1, 2]. Fiber diameter and length determine both the quality and the amount of cashmere produced by an animal. The longer the length and the smaller the diameter of the cashmere fibers, the higher the price becomes. IMCGs exhibit seasonal rhythm and annual cycle of cashmere growth that are controlled by daylength. During the period from the summer solstice to midwinter, when the length of day is reduced, cashmere fiber has a high growth speed; in contrast, it becomes low during the period from midwinter to the next summer solstice [3, 4]. This photoperiodic characteristic of cashmere fiber growth is convenient for cashmere harvest and formulating a management strategy of cashmere production. During the past decades, many mammalian genomic and transcript sequences have become available, including Homo

References

[1]  M. Ibraheem, H. Galbraith, J. Scaife, and S. Ewen, “Growth of secondary hair follicles of the Cashmere goat in vitro and their response to prolactin and melatonin,” Journal of Anatomy, vol. 185, part 1, pp. 135–142, 1994.
[2]  D. Allain and C. Renieri, “Genetics of fibre production and fleece characteristics in small ruminants, Angora rabbit and South American camelids,” Animal, vol. 4, no. 9, pp. 1472–1481, 2010.
[3]  A. J. Nixon, M. P. Gurns, and K. Betterid, “Seasonal hair follicle activity and fibre growth in some New Zealand Cashmere-bearing goats (Caprus hircus),” Journal of Zoology, vol. 224, pp. 589–598, 1991.
[4]  B. J. McDonald, W. A. Hoey, and P. S. Hopkins, “Cyclical fleece growth in cashmere goats,” Australian Journal of Agricultural Research, vol. 38, pp. 597–609, 1987.
[5]  Z. Wang, M. Gerstein, and M. Snyder, “RNA-Seq: a revolutionary tool for transcriptomics,” Nature Reviews Genetics, vol. 10, no. 1, pp. 57–63, 2009.
[6]  S. Guo, Y. Zheng, J. G. Joung et al., “Transcriptome sequencing and comparative analysis of cucumber flowers with different sex types,” BMC Genomics, vol. 11, no. 1, article 384, 2010.
[7]  S. Wickramasinghe, G. Rincon, A. Islas-Trejo, and J. F. Medrano, “Transcriptional profiling of bovine milk using RNA sequencing,” BMC Genomics, vol. 13, article 45, 2012.
[8]  U. Nagalakshmi, Z. Wang, K. Waern et al., “The transcriptional landscape of the yeast genome defined by RNA sequencing,” Science, vol. 320, no. 5881, pp. 1344–1349, 2008.
[9]  Z. Wenguang, W. Jianghong, L. Jinquan, and M. Yashizawa, “A subset of skin-expressed microRNAs with possible roles in goat and sheep hair growth based on expression profiling of mammalian microRNAs,” OMICS A Journal of Integrative Biology, vol. 11, no. 4, pp. 385–396, 2007.
[10]  M. G. Grabherr, B. J. Haas, M. Yassour et al., “Full-length transcriptome assembly from RNA-Seq data without a reference genome,” Nature Biotechnology, vol. 29, no. 7, pp. 644–652, 2011.
[11]  R. Li, C. Yu, Y. Li et al., “SOAP2: an improved ultrafast tool for short read alignment,” Bioinformatics, vol. 25, no. 15, pp. 1966–1967, 2009.
[12]  C. Burge and S. Karlin, “Prediction of complete gene structures in human genomic DNA,” Journal of Molecular Biology, vol. 268, no. 1, pp. 78–94, 1997.
[13]  R. L. Tatusov, N. D. Fedorova, J. D. Jackson et al., “The COG database: an updated vesion includes eukaryotes,” BMC Bioinformatics, vol. 4, article 41, 2003.
[14]  M. Kanehisa, M. Araki, S. Goto et al., “KEGG for linking genomes to life and the environment,” Nucleic Acids Research, vol. 36, no. 1, pp. D480–D484, 2008.
[15]  A. Conesa, S. G?tz, J. M. García-Gómez, J. Terol, M. Talón, and M. Robles, “Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research,” Bioinformatics, vol. 21, no. 18, pp. 3674–3676, 2005.
[16]  J. Ye, L. Fang, H. Zheng et al., “WEGO: a web tool for plotting GO annotations,” Nucleic Acids Research, vol. 34, pp. W293–W297, 2006.
[17]  S. Audic and J. M. Claverie, “The significance of digital gene expression profiles,” Genome Research, vol. 7, no. 10, pp. 986–995, 1997.
[18]  A. Mortazavi, B. A. Williams, K. McCue, L. Schaeffer, and B. Wold, “Mapping and quantifying mammalian transcriptomes by RNA-Seq,” Nature Methods, vol. 5, no. 7, pp. 621–628, 2008.
[19]  K. J. Livak and T. D. Schmittgen, “Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method,” Methods, vol. 25, no. 4, pp. 402–408, 2001.
[20]  X. Tao, Y. H. Gu, H. Y. Wang, W. Zheng, X. Li, et al., “Digital gene expression analysis based on integrated de novo transcriptome assembly of sweet potato [Ipomoea batatas (L.) Lam],” PLoS One, vol. 7, Article ID e36234, 2012.
[21]  U. Lagercrantz, H. Ellegren, and L. Andersson, “The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates,” Nucleic Acids Research, vol. 21, no. 5, pp. 1111–1115, 1993.
[22]  F. Marchetti and S. Venkatachalam, “The multiple roles of Bub1 in chromosome segregation during mitosis and meiosis,” Cell Cycle, vol. 9, no. 1, pp. 58–63, 2010.
[23]  C. Klebig, D. Korinth, and P. Meraldi, “Bub1 regulates chromosome segregation in a kinetochore-independent manner,” Journal of Cell Biology, vol. 185, no. 5, pp. 841–858, 2009.
[24]  Y. Chen, D. J. Riley, P. L. Chen, and W. H. Lee, “HEC, a novel nuclear protein rich in leucine heptad repeats specifically involved in mitosis,” Molecular and Cellular Biology, vol. 17, no. 10, pp. 6049–6056, 1997.
[25]  R. P. Fisher and D. O. Morgan, “A novel cyclin associates with MO15/CDK7 to form the CDK-activating kinase,” Cell, vol. 78, no. 4, pp. 713–724, 1994.
[26]  J. Huelsken, R. Vogel, B. Erdmann, G. Cotsarelis, and W. Birchmeier, “β-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin,” Cell, vol. 105, no. 4, pp. 533–545, 2001.
[27]  M. Yuhki, M. Yamada, M. Kawano et al., “BMPR1A signaling is necessary for hair follicle cycling and hair shaft differentiation in mice,” Development, vol. 131, no. 8, pp. 1825–1833, 2004.
[28]  V. A. Botchkarev and M. Y. Fessing, “Edar signaling in the control of hair follicle development,” The Journal of Investigative Dermatology Symposium Proceedings, vol. 10, no. 3, pp. 247–251, 2005.
[29]  C. Chiang, R. Z. Swan, M. Grachtchouk et al., “Essential role for Sonic hedgehog during hair follicle morphogenesis,” Developmental Biology, vol. 205, no. 1, pp. 1–9, 1999.
[30]  N. Weger and T. Schlake, “IGF-I signalling controls the hair growth cycle and the differentiation of hair shafts,” Journal of Investigative Dermatology, vol. 125, no. 5, pp. 873–882, 2005.
[31]  H. Y. Su, J. G. H. Hickford, P. H. B. The, A. M. Hill, C. M. Frampton, and R. Bickerstaffe, “Increased vibrissa growth in transgenic mice expressing insulin-like growth factor 1,” Journal of Investigative Dermatology, vol. 112, no. 2, pp. 245–248, 1999.
[32]  H. Kulessa, G. Turk, and B. L. M. Hogan, “Inhibition of Bmp signaling affects growth and differentiation in the anagen hair follicle,” EMBO Journal, vol. 19, no. 24, pp. 6664–6674, 2000.
[33]  D. J. Headon and P. A. Overbeek, “Involvement of a novel Tnf receptor homologue in hair follicle induction,” Nature Genetics, vol. 22, no. 4, pp. 370–374, 1999.
[34]  L. Guo, L. Degenstein, and E. Fuchs, “Keratinocyte growth factor is required for hair development but not for wound healing,” Genes and Development, vol. 10, no. 2, pp. 165–175, 1996.
[35]  V. A. Botchkarev, N. V. Botchkareva, A. A. Sharov, K. Funa, O. Huber, and B. A. Gilchrest, “Modulation of BMP signaling by noggin is required for induction of the secondary (nontylotrich) hair follicles,” Journal of Investigative Dermatology, vol. 118, no. 1, pp. 3–10, 2002.
[36]  V. A. Botchkarev, N. V. Botchkareva, W. Roth et al., “Noggin is a mesenchymally derived stimulator of hair-follicle induction,” Nature Cell Biology, vol. 1, no. 3, pp. 158–164, 1999.
[37]  S. Vauclair, M. Nicolas, Y. Barrandon, and F. Radtke, “Notch1 is essential for postnatal hair follicle development and homeostasis,” Developmental Biology, vol. 284, no. 1, pp. 184–193, 2005.
[38]  A. Rangarajan, C. Talora, R. Okuyama et al., “Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation,” EMBO Journal, vol. 20, no. 13, pp. 3427–3436, 2001.
[39]  A. G. Li, M. I. Koster, and X. J. Wang, “Roles of TGFβ signaling in epidermal/appendage development,” Cytokine and Growth Factor Reviews, vol. 14, no. 2, pp. 99–111, 2003.
[40]  L. P. Sanford, I. Ormsby, A. C. Gittenberger-de Groot et al., “TGFβ2 knockout mice have multiple developmental defects that are non-overlapping with other TGFβ knockout phenotypes,” Development, vol. 124, no. 13, pp. 2659–2670, 1997.
[41]  T. Andl, S. T. Reddy, T. Gaddapara, and S. E. Millar, “WNT signals are required for the initiation of hair follicle development,” Developmental Cell, vol. 2, no. 5, pp. 643–653, 2002.
[42]  M. Ito, Z. Yang, T. Andl et al., “Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding,” Nature, vol. 447, no. 7142, pp. 316–320, 2007.
[43]  K. N?rhi, E. J?rvinen, W. Birchmeier, M. M. Taketo, M. L. Mikkola, and I. Thesleff, “Sustained epithelial β-catenin activity induces precocious hair development but disrupts hair follicle down-growth and hair shaft formation,” Development, vol. 135, no. 6, pp. 1019–1028, 2008.
[44]  J. M. Hebert, T. Rosenquist, J. Gotz, and G. R. Martin, “FGF5 as a regulator of the hair growth cycle: evidence from targeted and spontaneous mutations,” Cell, vol. 78, no. 6, pp. 1017–1025, 1994.
[45]  K. S. Stenn and R. Paus, “Controls of hair follicle cycling,” Physiological Reviews, vol. 81, no. 1, pp. 449–494, 2001.
[46]  S. E. Millar, “Molecular mechanisms regulating hair follicle development,” Journal of Investigative Dermatology, vol. 118, no. 2, pp. 216–225, 2002.
[47]  L. Alonso and E. Fuchs, “Stem cells in the skin: waste not, Wnt not,” Genes and Development, vol. 17, no. 10, pp. 1189–1200, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133