Amyotrophic Lateral Sclerosis (ALS) is a rare neurological disease affecting mainly motor neurons and often leads to paralysis and death in extreme cases. For exploring the role of microRNAs in genes regulation in ALS disease, miRanda was employed for prediction of target sites of miRNAs expressed in various parts of brain and CNS on 35 genes associated with ALS. Similar search was conducted using TargetScan and PicTar for prediction of target sites in UTR only. 1456 target sites were predicted using miRanda and more target sites were found in UTR and CDS region as compared to UTR. 11 target sites were predicted to be common by all the algorithms and, thus, these represent the most significant sites. Target site hotspots were identified and were recognized as hotspots for multiple miRNAs action, thus, acting as favoured sites of action for the repression of gene expression. The complex interplay of genes and miRNAs brought about by multiplicity and cooperativity was explored. This investigation will aid in elucidating the mechanism of action of miRNAs for the considered genes. The intrinsic network of miRNAs expressed in nervous system and genes associated with ALS may provide rapid and effective outcome for therapeutic applications and diagnosis. 1. Introduction A complete coordination of brain signals and their functional execution in different body parts is often found in multicellular organisms. However, mechanism underlying such coordination between brain and body is still a mystery. How a trivial defect in the coordinated communication can lead to a disease has been a subject of study for many years. Neurological disorders are responsible for major proportion of the global burden of disease [1]. The mammoth rise in incidence of neurological disorders has led to initiatives for declaration of global epidemic. With the significant rise in number of cases of neurological disorders across the globe, it is postulated that no particular geographical region or age group is immune to these disorders. Among these, neurodegenerative disorders that are triggered by environmental and genetic factors are major cause of concern for aged population. Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, prion diseases, Amyotrophic Lateral Sclerosis, Huntington's disease, and various spinocerebellar ataxias account for significant morbidity. Progressive and slow degeneration of neurons as witnessed in these diseases leads to neuron dysfunction. The escalating cost of treatment and financial burden in terms of loss in disability adjusted life
References
[1]
World Health Organisation, “The world health report 2001. Mental health: new understanding, new hope,” World Health Organisation, Geneva, Switzerland, 2001.
[2]
J. M. Charcot and A. Joffroy, “Deux cas d’atrophie musculaire progressive avec lésions de la substance grise et de faisceaux anterolatéraux de la moelle épiniére,” Archives de Physiologie Normale et Pathologique, vol. 1, pp. 354–367, 1869.
[3]
L. C. Wijesekera and P. N. Leigh, “Amyotrophic lateral sclerosis,” Orphanet Journal of Rare Diseases, vol. 4, no. 1, article 3, 2009.
[4]
D. W. Mulder, L. T. Kurland, K. P. Offord, and M. Beard, “Familial adult motor neuron disease: amyotrophic lateral sclerosis,” Neurology, vol. 36, no. 4, pp. 511–517, 1986.
[5]
D. W. Cleveland and J. D. Rothstein, “From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS,” Nature Reviews Neuroscience, vol. 2, no. 11, pp. 806–819, 2001.
[6]
P. M. Worms, “The epidemiology of motor neuron diseases: a review of recent studies,” Journal of the Neurological Sciences, vol. 191, no. 1-2, pp. 3–9, 2001.
[7]
K. Abhinav, A. Al-Chalabi, T. Hortobagyi, and P. N. Leigh, “Electrical injury and amyotrophic lateral sclerosis: a systematic review of the literature,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 78, no. 5, pp. 450–453, 2007.
[8]
S. Zoccolella, E. Beghi, G. Palagano et al., “Analysis of survival and prognostic factors in amyotrophic lateral sclerosis: a population based study,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 79, no. 1, pp. 33–37, 2008.
[9]
G. Logroscino, E. Beghi, S. Zoccolella et al., “Incidence of amyotrophic lateral sclerosis in southern Italy: a population based study,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 76, no. 8, pp. 1094–1098, 2005.
[10]
B. J. Traynor, M. B. Codd, B. Corr, C. Forde, E. Frost, and O. Hardiman, “Incidence and prevalence of ALS in Ireland, 1995–1997 a population-based study,” Neurology, vol. 52, no. 3, pp. 504–509, 1999.
[11]
S. Cronin, O. Hardiman, and B. J. Traynor, “Ethnic variation in the incidence of ALS: a systematic review,” Neurology, vol. 68, no. 13, pp. 1002–1007, 2007.
[12]
T. G. Lesnick, E. J. Sorenson, J. E. Ahlskog et al., “Beyond Parkinson disease: amyotrophic lateral sclerosis and the Axon guidance pathway,” PLoS ONE, vol. 3, no. 1, Article ID e1449, 2008.
[13]
E. Chevalier-Larsen and E. L. F. Holzbaur, “Axonal transport and neurodegenerative disease,” Biochimica et Biophysica Acta, vol. 1762, no. 11-12, pp. 1094–1108, 2006.
[14]
S. Boillée, C. Vande Velde, and D. Cleveland, “ALS: a disease of motor neurons and their nonneuronal neighbors,” Neuron, vol. 52, no. 1, pp. 39–59, 2006.
[15]
N. Rajewsky, “microRNA target predictions in animals,” Nature Genetics, vol. 38, no. 1, pp. S8–S13, 2006.
[16]
S. K. Singh, M. Pal Bhadra, H. J. Girschick, and U. Bhadra, “MicroRNAs—micro in size but macro in function,” FEBS Journal, vol. 275, no. 20, pp. 4929–4944, 2008.
[17]
S. N. Bhattacharyya, R. Habermacher, U. Martine, E. I. Closs, and W. Filipowicz, “Relief of microRNA-mediated translational repression in human cells subjected to stress,” Cell, vol. 125, no. 6, pp. 1111–1124, 2006.
[18]
W. J. Lukiw, Y. Zhao, and G. C. Jian, “An NF-κB-sensitive micro RNA-146a-mediated inflammatory circuit in alzheimer disease and in stressed human brain cells,” Journal of Biological Chemistry, vol. 283, no. 46, pp. 31315–31322, 2008.
[19]
R. Saba, C. D. Goodman, R. L. C. H. Huzarewich, C. Robertson, and S. A. Booth, “A miRNA signature of prion induced neurodegeneration,” PLoS ONE, vol. 3, no. 11, Article ID e3652, 2008.
[20]
N. Bushati and S. M. Cohen, “microRNAs in neurodegeneration,” Current Opinion in Neurobiology, vol. 18, no. 3, pp. 292–296, 2008.
[21]
J. R. Brown and P. Sanseau, “A computational view of microRNAs and their targets,” Drug Discovery Today, vol. 10, no. 8, pp. 595–601, 2005.
[22]
I. Bentwich, “Prediction and validation of microRNAs and their targets,” FEBS Letters, vol. 579, no. 26, pp. 5904–5910, 2005.
[23]
E. Berezikov, V. Guryev, J. Van De Belt, E. Wienholds, R. H. A. Plasterk, and E. Cuppen, “Phylogenetic shadowing and computational identification of human microRNA genes,” Cell, vol. 120, no. 1, pp. 21–24, 2005.
[24]
M. Kanehisa, M. Araki, S. Goto et al., “KEGG for linking genomes to life and the environment,” Nucleic Acids Research, vol. 36, no. 1, pp. D480–D484, 2008.
[25]
S. Griffiths-Jones, H. K. Saini, S. Van Dongen, and A. J. Enright, “miRBase: tools for microRNA genomics,” Nucleic Acids Research, vol. 36, no. 1, pp. D154–D158, 2008.
[26]
A. J. Enright, B. John, U. Gaul, T. Tuschl, C. Sander, and D. S. Marks, “MicroRNA targets in Drosophila,” Genome Biology, vol. 5, pp. 1–12, 2003.
[27]
B. John, A. J. Enright, A. Aravin, T. Tuschl, C. Sander, and D. S. Marks, “Human microRNA targets,” PLoS Biology, vol. 2, no. 11, article e363, 2004.
[28]
S. Wuchty, W. Fontana, I. L. Hofacker, and P. Schuster, “Complete suboptimal folding of RNA and the stability of secondary structures,” Biopolymers, vol. 49, pp. 145–165, 1999.
[29]
B. P. Lewis, C. B. Burge, and D. P. Bartel, “Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets,” Cell, vol. 120, no. 1, pp. 15–20, 2005.
[30]
A. Krek, D. Grün, M. N. Poy et al., “Combinatorial microRNA target predictions,” Nature Genetics, vol. 37, no. 5, pp. 495–500, 2005.
[31]
X. Zhou, X. Duan, J. Qian, and F. Li, “Abundant conserved microRNA target sites in the 5′-untranslated region and coding sequence,” Genetica, vol. 137, no. 2, pp. 159–164, 2009.
[32]
A. M. Duursma, M. Kedde, M. Schrier, C. Le Sage, and R. Agami, “miR-148 targets human DNMT3b protein coding region,” RNA, vol. 14, no. 5, pp. 872–877, 2008.
[33]
J. J. Forman, A. Legesse-Miller, and H. A. Coller, “A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 39, pp. 14879–14884, 2008.
[34]
A. Lal, H. H. Kim, K. Abdelmohsen et al., “p16INK4a translation suppressed by miR-24,” PLoS ONE, vol. 3, no. 3, Article ID e1864, 2008.
[35]
I. Rigoutsos, “New tricks for animal micrornas: targeting of amino acid coding regions at conserved and nonconserved sites,” Cancer Research, vol. 69, no. 8, pp. 3245–3248, 2009.
[36]
Y. Tay, J. Zhang, A. M. Thomson, B. Lim, and I. Rigoutsos, “MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation,” Nature, vol. 455, no. 7216, pp. 1124–1128, 2008.
[37]
A. Tanzer and P. F. Stadler, “Molecular evolution of a microRNA cluster,” Journal of Molecular Biology, vol. 339, no. 2, pp. 327–335, 2004.
[38]
Y. Hayashita, H. Osada, Y. Tatematsu et al., “A polycistronic MicroRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation,” Cancer Research, vol. 65, no. 21, pp. 9628–9632, 2005.
[39]
M. A. Samols, J. Hu, R. L. Skalsky, and R. Renne, “Cloning and identification of a MicroRNA cluster within the latency-associated region of Kaposi's sarcoma-associated herpesvirus,” Journal of Virology, vol. 79, no. 14, pp. 9301–9305, 2005.
[40]
R. Zhang, Y.-Q. Wang, and B. Su, “Molecular evolution of a primate-specific microRNA family,” Molecular Biology and Evolution, vol. 25, no. 7, pp. 1493–1502, 2008.
[41]
A. Tranzer and P. F. Stadler, “Evolution of microRNAs,” Methods in Molecular Biology, vol. 342, pp. 335–350, 2006.
[42]
J. R. Lytle, T. A. Yario, and J. A. Steitz, “Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′; UTR,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 23, pp. 9667–9672, 2007.