Transgenic papaya plants were regenerated from hypocotyls and immature zygotic embryo after cocultivation with Agrobacterium tumefaciens LBA-4404 carrying a binary plasmid vector system containing neomycin phosphotransferase (nptII) gene as the selectable marker and -glucuronidase (GUS) as the reporter gene. The explants were co-cultivated with Agrobacterium tumefaciens on regeneration medium containing 500?mg/L carbenicillin?+?200?mg/L cefotaxime for one week. The cocultivated explants were transferred into the final selection medium containing 500?mg/L carbenicillin?+?200?mg/L cefotaxime?+?50?mg/L kanamycin for callus induction as well as plant regeneration. The callus derived from the hypocotyls of Carica papaya cv. Shahi showed the highest positive GUS activities compared to Carica papaya cv. Ranchi. The transformed callus grew vigorously and formed embryos followed by transgenic plantlets successfully. The result of this study showed that the hypocotyls of C. papaya cv. Shahi and C. papaya cv. Ranchi are better explants for genetic transformation compared to immature embryos. The transformed C. papaya cv. Shahi also showed the maximum number of plant regeneration compared to that of C. papaya cv. Ranchi. 1. Introduction Papaya (Carica papaya L.) is a tropical fruit having commercial importance because of its high nutritive and medicinal value [1]. It is also a good source of vitamins A and C and the proteolytic enzyme papain and chymopapain [2, 3]. The origins of papaya are south Mexico and Costa Rica [4]. Major papaya cultivating countries are India, Brazil, Mexico, Nigeria, Indonesia, China, Peru, Thailand, and Philippines [5]. Papaya cultivation has been affected by a number of diseases especially those caused by the papaya ringspot virus (PRSV) [6, 7], papaya bunchy top bacterium [8], and the fungus Phytophthora palmivora [9]. Traditional breeding of papaya cultivars for resistance to these maladies had limited success. The rapid development in biotechnology, especially genetic transformation of plants, has made it possible to introduce selected genes into plants to control plant diseases and pests. Crop improvement to solve disease problems of a tree species like papaya has been enhanced by gene transfer techniques [10]. Genetic engineering of plants has evoked great interest in developing modern technology for crop improvement. Many transgenic plants have been successfully produced with remarkable results such as resistance to chemicals, pests, and diseases [11]. The success of any genetic transformation protocol depends on three steps such
References
[1]
R. B. Malabadi, S. V. Kumar, G. S. Mulgund, and K. Nataraja, “Induction of somatic embryogenesis in papaya (Carica papaya),” Research in Biotechnology, vol. 2, no. 5, pp. 40–55, 2011.
[2]
R. M. Manshardt, “Papaya,” in Biotechnology of Perennial Fruit Crops, F. A. Hammerschlag and R. E. Litz, Eds., pp. 489–511, CABI, London, UK, 1992.
[3]
J. Bhattacharya and S. S. Khuspe, “In vitro and in vivo germination of papaya (Carica papaya L.) seeds,” Scientia Horticulturae, vol. 91, no. 1-2, pp. 39–49, 2001.
[4]
A. DeCandolle, Origin of Cultivated Plants, John Wiley and Sons, New York, NY, USA, 1984.
[5]
R. Jayavalli, T. N. Balamohan, N. Manivannan, and M. Govindaraj, “Breaking the intergeneric hybridization barrier in Carica papaya and Vasconcellea cauliflora,” Scientia Horticulturae, vol. 130, no. 4, pp. 787–794, 2011.
[6]
S. D. Yeh and D. Gansalves, “Evaluation of induced mutants of papaya ringspot virus for control by cross protection,” Phytopathology, vol. 74, no. 9, pp. 1086–1091, 1984.
[7]
D. Gonsalves, “Control of papaya ringspot virus in papaya: a case study,” Annual Review of Phytopathology, vol. 36, pp. 415–437, 1998.
[8]
M. J. Davis, Z. Ying, B. R. Brunner, A. Pantoja, and F. H. Ferwerda, “Rickettsial relative associated with papaya bunchy top disease,” Current Microbiology, vol. 36, no. 2, pp. 80–84, 1998.
[9]
A. M. Alvarez and M. G. Nelson, “Control of Phytopthora palmivora in papaya orchards with weekly sprays of chlorothlonil,” Plant Disease, vol. 66, no. 1, pp. 37–39, 1982.
[10]
R. Grumet, “Genetically engineered plant virus resistance,” HortScience, vol. 25, no. 5, pp. 508–513, 1990.
[11]
D. M. Shah, C. M. T. Rommens, and R. N. Beachy, “Resistance to diseases and insects in transgenic plants: progress and applications to agriculture,” Trends in Biotechnology, vol. 13, no. 9, pp. 362–368, 1995.
[12]
L. Hamama, L. Voisine, D. Peltier, and J. Boccon-Gibod, “Shoot regeneration and genetic transformation by Agrobacterium tumefaciens of Hydrangea macrophylla Ser. leaf discs,” Scientia Horticulturae, vol. 127, no. 3, pp. 378–387, 2011.
[13]
G. A. de la Riva, J. Gonzalez-Carbrera, R. Vazquez-Padron, and C. Ayra-Pardo, “Agrobacterium tumefaciens: a natural tool for plant transformation,” Electronic Journal of Biotechnology, vol. 1, no. 3, pp. 118–133, 1998.
[14]
G. Hansen, R. D. Shillito, and M.-D. Chilton, “T-strand integration in maize protoplasts after codelivery of a T-DNA substrate and virulence genes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 21, pp. 11726–11730, 1997.
[15]
G. A. Enríquez-Obregón, R. I. Vázquez-Padrón, D. L. Prieto-Samsonov, G. A. de la Riva, and G. Selman-Housein, “Herbicide-resistant sugarcane (Saccharum officinarum L.) plants by Agrobacterium-mediated transformation,” Planta, vol. 206, no. 1, pp. 20–27, 1998.
[16]
M. M. M. Fitch, R. M. Manshardt, D. Gonsalves, J. L. Slightom, and J. C. Sanford, “Stable transformation of papaya via microprojectile bombardment,” Plant Cell Reports, vol. 9, no. 4, pp. 189–194, 1990.
[17]
M. M. M. Fitch, R. M. Manshardt, D. Gonsalves, and J. L. Slightom, “Transgenic papaya plants from Agrobacterium-mediated transformation of somatic embryos,” Plant Cell Reports, vol. 12, no. 5, pp. 245–249, 1993.
[18]
Y.-H. Cheng, J.-S. Yang, and S.-D. Yen, “Efficient transformation of papaya by coat protein gene of papaya ringspot virus mediated by Agrobacterium following liquid-phase wounding of embryogenic tissues with caborundum,” Plant Cell Reports, vol. 16, no. 3-4, pp. 127–132, 1996.
[19]
M. M. M. Fitch and R. M. Manshardt, “Somatic embryogenesis and plant regeneration from immature zygotic embryos of papaya (Carica papaya L.),” Plant Cell Reports, vol. 9, no. 6, pp. 320–324, 1990.
[20]
S. Z. Pang and J. Sanford, “Agrobacterium mediated transformation in papaya,” Journal of the American Society For Horticultural Science, vol. 113, no. 2, pp. 287–291, 1988.
[21]
P. F. Tennant, C. Gonsalves, K. S. Ling et al., “Differential protection against papaya ringspot virus isolates in coat protein gene transgenic papaya and classically cross-protected Papaya,” Phytopathology, vol. 84, no. 11, pp. 1359–1366, 1994.
[22]
Z. Ying, X. Yu, and M. J. Davis, “New method for obtaining transgenic papaya plants by Agrobacteriaum mediated transformation of somatic embryos,” Proceedings of the Florida State Horticultural Society, vol. 112, pp. 201–205, 1999.
[23]
R. A. Jefferson, S. M. Burgess, and D. Hirsh, “β-Glucuronidase from Escherichia coli as a gene-fusion marker,” Proceedings of the National Academy of Sciences of the United States of America, vol. 83, no. 22, pp. 8447–8451, 1986.
[24]
D. B. Duncan, “Multiple range and multiple F-test,” Biometrics, vol. 11, no. 1, pp. 1–42, 1955.