The innate immune system of Drosophila is activated by ingestion of microorganisms. D. melanogaster breeds on fruits fermented by Saccharomyces cerevisiae, whereas D. virilis breeds on slime flux and decaying bark of tree housing a variety of bacteria, yeasts, and molds. In this study, it is shown that D. virilis has a higher resistance to oral infection of a species of filamentous fungi belonging to the genus Penicillium compared to D. melanogaster. In response to the fungal infection, a transcriptome profile of immune-related genes was considerably different between D. melanogaster and D. virilis: the genes encoding antifungal peptides, Drosomycin and Metchnikowin, were highly expressed in D. melanogaster whereas, the genes encoding Diptericin and Defensin were highly expressed in D. virilis. On the other hand, the immune-induced molecule (IM) genes showed contrary expression patterns between the two species: they were induced by the fungal infection in D. melanogaster but tended to be suppressed in D. virilis. Our transcriptome analysis also showed newly predicted immune-related genes in D. virilis. These results suggest that the innate immune system has been extensively differentiated during the evolution of these Drosophila species. 1. Introduction In natural environments, Drosophila species feed and breed on fermenting fruits, slime fluxes on decaying parts of tree, and so forth, where biochemical processes of bacteria and fungi are extremely active [1–3]. Therefore, Drosophila species are exposed to a huge number of microorganisms throughout their developmental stages. Feeding on decaying or fermented materials results in the ingestion of a wide variety of microorganisms in their digestive organs. Recent studies on larval immune response of D. melanogaster to oral infection of bacteria and fungi showed that the fat body mediated systemic immune response including antimicrobial peptide (AMP) production was triggered by infections of Gram-negative bacterial species such as Pseudomonas entomophila and Erwinia carotovora carotovora 15 (Ecc15) and of a dimorphic fungal species, Candida albicans [4–6]. AMPs are cationic small secretory peptides that exhibit a wide range of activities against bacteria, fungi, and/or viruses, playing an essential role in the innate immune system of Drosophila [7]. To date, seven AMP families, that is, Attacin, Cecropin, Defensin, Diptericin, Drosocin, Drosomycin, and Metchnikowin, have been identified in Drosophila melanogaster [7]. According to Sackton et al. (2007), it was indicated by their sequence analysis of the 12
References
[1]
H. L. Carson, “The ecology of Drosophila breeding sites,” in Harold L. Lyon Arboretum Lecture Number Two, pp. 1–28, University of Hawaii, 1971.
[2]
L. H. Throckmorton, “The phylogeny, ecology and geography of Drosophila,” in Invertebrates of Genetic Interest, R. C. King, Ed., pp. 421–469, Plenum Press, New York, NY, USA, 1975.
[3]
T. A. Markow and P. M. O'Grady, “Drosophila biology in the genomic age,” Genetics, vol. 177, no. 3, pp. 1269–1276, 2007.
[4]
N. Vodovar, M. Vinals, P. Liehl et al., “Drosophila host defense after oral infection by an entomopathogenic Pseudomonas species,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 32, pp. 11414–11419, 2005.
[5]
A. Basset, R. S. Khush, A. Braun et al., “The phytopathogenic bacteria Erwinia carotovora infects Drosophila and activates an immune response,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 7, pp. 3376–3381, 2000.
[6]
M. T. Glittenberg, I. Kounatidis, D. Christensen et al., “Pathogen and host factors are needed to provoke a systemic host response to gastrointestinal infection of Drosophila larvae by Candida albicans,” Disease Models and Mechanisms, vol. 4, no. 4, pp. 515–525, 2011.
[7]
B. Lemaitre and J. Hoffmann, “The host defense of Drosophila melanogaster,” Annual Review of Immunology, vol. 25, pp. 697–743, 2007.
[8]
T. B. Sackton, B. P. Lazzaro, T. A. Schlenke, J. D. Evans, D. Hultmark, and A. G. Clark, “Dynamic evolution of the innate immune system in Drosophila,” Nature Genetics, vol. 39, no. 12, pp. 1461–1468, 2007.
[9]
P. Fehlbaum, P. Bulet, L. Michaut et al., “Insect immunity: septic injury of Drosophila induces the synthesis of a potent antifungal peptide with sequence homology to plant antifungal peptides,” The Journal of Biological Chemistry, vol. 269, no. 52, pp. 33159–33163, 1994.
[10]
B. Lemaitre, E. Nicolas, L. Michaut, J.-M. Reichhart, and J. A. Hoffmann, “The dorsoventral regulatory gene cassette spatzle/Toll/Cactus controls the potent antifungal response in Drosophila adults,” Cell, vol. 86, no. 6, pp. 973–983, 1996.
[11]
P. Tzou, J.-M. Reichhart, and B. Lemaitre, “Constitutive expression of a single antimicrobial peptide can restore wild-type resistance to infection in immunodeficient Drosophila mutants,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 4, pp. 2152–2157, 2002.
[12]
D. G. Higgins, J. D. Thompson, and T. J. Gibson, “CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice,” Nucleic Acids Research, vol. 22, no. 22, pp. 4673–4680, 1994.
[13]
K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar, “MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods,” Molecular Biology and Evolution, vol. 28, no. 10, pp. 2731–2739, 2011.
[14]
R. W. S. Weber, P. Davoli, and H. Anke, “A microbial consortium involving the astaxanthin producer Xanthophyllomyces dendrorhous on freshly cut birch stumps in Germany,” Mycologist, vol. 20, no. 2, pp. 57–61, 2006.
[15]
R. W. S. Weber, “On the ecology of fungal consortia of spring sap-flows,” Mycologist, vol. 20, no. 4, pp. 140–143, 2006.
[16]
L. Coates and G. Johnson, “Postharvest diseases of fruit and vegetables,” in Plant Pathogens and Plant Diseases, J. F. Brown and H. J. Ogle, Eds., pp. 533–548, Rockvale Publications, 1997.
[17]
S. W. Peterson, E. M. Bayer, and D. T. Wicklow, “Penicillium thiersii, Penicillium angulare and Penicillium decaturense, new species isolated from wood-decay fungi in North America and their phylogenetic placement from multilocus DNA sequence analysis,” Mycologia, vol. 96, no. 6, pp. 1280–1293, 2004.
[18]
R Development Core Team, R: A Language and Environment For Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2008.
[19]
P. Tzou, E. De Gregorio, and B. Lemaitre, “How Drosophila combats microbial infection: a model to study innate immunity and host-pathogen interactions,” Current Opinion in Microbiology, vol. 5, no. 1, pp. 102–110, 2002.
[20]
P. Chomczynski and N. Sacchi, “Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction,” Analytical Biochemistry, vol. 162, no. 1, pp. 156–159, 1987.
[21]
S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment search tool,” Journal of Molecular Biology, vol. 215, no. 3, pp. 403–410, 1990.
[22]
C. Camacho, G. Coulouris, V. Avagyan et al., “BLAST+: architecture and applications,” BMC Bioinformatics, vol. 10, article 421, 2009.
[23]
Drosophila 12 Genomes Consortium, “Evolution of genes and genomes on the Drosophila phylogeny,” Nature, vol. 450, no. 7167, pp. 203–218, 2007.
[24]
T. N. Petersen, S. Brunak, G. von Heijne, and H. Nielsen, “SignalP 4.0: discriminating signal peptides from transmembrane regions,” Nature Methods, vol. 8, no. 10, pp. 785–786, 2011.
[25]
P. Duckert, S. Brunak, and N. Blom, “Prediction of proprotein convertase cleavage sites,” Protein Engineering, Design and Selection, vol. 17, no. 1, pp. 107–112, 2004.
[26]
T. Carver and A. Bleasby, “The design of Jemboss: a graphical user interface to EMBOSS,” Bioinformatics, vol. 19, no. 14, pp. 1837–1843, 2003.
[27]
S. Lata, N. K. Mishra, and G. P. S. Raghava, “AntiBP2: improved version of antibacterial peptide prediction,” BMC Bioinformatics, vol. 11, no. 1, article S19, 2010.
[28]
S. Thomas, S. Karnik, R. S. Barai, V. K. Jayaraman, and S. Idicula-Thomas, “CAMP: a useful resource for research on antimicrobial peptides,” Nucleic Acids Research, vol. 38, no. 1, pp. D774–D780, 2010.
[29]
M. Torrent, V. M. Nogués, and E. Boix, “A theoretical approach to spot active regions in antimicrobial proteins,” BMC Bioinformatics, vol. 10, article 373, 2009.
[30]
M. D. Robinson and A. Oshlack, “A scaling normalization method for differential expression analysis of RNA-seq data,” Genome Biology, vol. 11, no. 3, article r25, 2010.
[31]
J. Sun, T. Nishiyama, K. Shimizu, and K. Kadota, “TCC: an R package for comparing tag count data with robust normalization strategies,” BMC Bioinformatics, vol. 14, article 219, 2013.
[32]
S. L. Stroschein-Stevenson, E. Foley, P. H. O'Farrell, and A. D. Johnson, “Identification of Drosophila gene products required for phagocytosis of Candida albicans,” PLoS Biology, vol. 4, no. 1, article e4, 2006.
[33]
B. Gershman, O. Puig, L. Hang, R. M. Peitzsch, M. Tatar, and R. S. Garofalo, “High-resolution dynamics of the transcriptional response to nutrition in Drosophila: a key role for dFOXO,” Physiological Genomics, vol. 29, no. 1, pp. 24–34, 2007.
[34]
T. B. Sackton and A. G. Clark, “Comparative profiling of the transcriptional response to infection in two species of Drosophila by short-read cDNA sequencing,” BMC Genomics, vol. 10, article 259, 2009.
[35]
V. N. Bhatia, D. H. Perlman, C. E. Costello, and M. E. McComb, “Software tool for researching annotations of proteins: open-source protein annotation software with data visualization,” Analytical Chemistry, vol. 81, no. 23, pp. 9819–9823, 2009.
[36]
P. Mellroth, J. Karlsson, and H. Steiner, “A scavenger function for a Drosophila peptidoglycan recognition protein,” The Journal of Biological Chemistry, vol. 278, no. 9, pp. 7059–7064, 2003.
[37]
V. Bischoff, C. Vignal, B. Duvic, I. G. Boneca, J. A. Hoffmann, and J. Royet, “Downregulation of the Drosophila immune response by peptidoglycan-recognition proteins SC1 and SC2,” PLoS Pathogens, vol. 2, no. 2, p. e14, 2006.
[38]
A. Zaidman-Rémy, M. Hervé, M. Poidevin et al., “The Drosophila amidase PGRP-LB modulates the immune response to bacterial infection,” Immunity, vol. 24, no. 4, pp. 463–473, 2006.
[39]
J. C. Paredes, D. P. Welchman, M. Poidevin, and B. Lemaitre, “Negative regulation by Amidase PGRPs shapes the Drosophila antibacterial response and protects the Fly from innocuous infection,” Immunity, vol. 35, no. 5, pp. 770–779, 2011.
[40]
R. M. Waterhouse, F. Tegenfeldt, J. Li, E. M. Zdobnov, and E. V. Kriventseva, “OrthoDB: a hierarchical catalog of animal, fungal and bacterial orthologs,” Nucleic Acids Research, vol. 41, pp. 358–365, 2013.
[41]
I. K. Hariharan, K.-Q. Hu, H. Asha, A. Quintanilla, R. M. Ezzell, and J. Settleman, “Characterization of rho GTPase family homologues in Drosophila melanogaster: overexpressing Rho1 in retinal cells causes a late developmental defect,” The EMBO Journal, vol. 14, no. 2, pp. 292–302, 1995.
[42]
C. R. Magie, M. R. Meyer, M. S. Gorsuch, and S. M. Parkhurst, “Mutations in the Rho1 small GTPase disrupt morphogenesis and segmentation during early Drosophila development,” Development, vol. 126, no. 23, pp. 5353–5364, 1999.
[43]
S. Greenberg and S. Grinstein, “Phagocytosis and innate immunity,” Current Opinion in Immunology, vol. 14, no. 1, pp. 136–145, 2002.
[44]
C. R. Magie and S. M. Parkhurst, “Rho1 regulates signaling events required for proper Drosophila embryonic development,” Developmental Biology, vol. 278, no. 1, pp. 144–154, 2005.
[45]
Y. G. Ma, M. Y. Cho, M. Zhao et al., “Human mannose-binding lectin and L-ficolin function as specific pattern recognition proteins in the lectin activation pathway of complement,” The Journal of Biological Chemistry, vol. 279, no. 24, pp. 25307–25312, 2004.
[46]
Y. Endo, M. Matsushita, and T. Fujita, “Role of ficolin in innate immunity and its molecular basis,” Immunobiology, vol. 212, no. 4-5, pp. 371–379, 2007.
[47]
H. Agaisse and N. Perrimon, “The roles of JAK/STAT signaling in Drosophila immune responses,” Immunological Reviews, vol. 198, pp. 72–82, 2004.
[48]
J. Kallio, A. Leinonen, J. Ulvila, S. Valanne, R. A. Ezekowitz, and M. R?met, “Functional analysis of immune response genes in Drosophila identifies JNK pathway as a regulator of antimicrobial peptide gene expression in S2 cells,” Microbes and Infection, vol. 7, no. 5-6, pp. 811–819, 2005.
[49]
B. Lemaitre, J.-M. Reichhart, and J. A. Hoffmann, “Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 26, pp. 14614–14619, 1997.
[50]
E. De Gregorio, P. T. Spellman, P. Tzou, G. M. Rubin, and B. Lemaitre, “The Toll and Imd pathways are the major regulators of the immune response in Drosophila,” The EMBO Journal, vol. 21, no. 11, pp. 2568–2579, 2002.
[51]
E. De Gregorio, P. T. Spellman, G. M. Rubin, and B. Lemaitre, “Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 22, pp. 12590–12595, 2001.
[52]
P. Irving, L. Troxler, T. S. Heuer et al., “A genome-wide analysis of immune responses in Drosophila,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 26, pp. 15119–15124, 2001.
[53]
C. Wicker, J.-M. Reichhart, D. Hoffmann, D. Hultmark, C. Samakovlis, and J. A. Hoffmann, “Insect immunity. Characterization of a Drosophila cDNA encoding a novel member of the diptericin family of immune peptides,” The Journal of Biological Chemistry, vol. 265, no. 36, pp. 22493–22498, 1990.
[54]
J.-L. Dimarcq, D. Hoffmann, M. Meister et al., “Characterization and transcriptional profiles of a Drosophila gene encoding an insect defensin. A study in insect immunity,” European Journal of Biochemistry, vol. 221, no. 1, pp. 201–209, 1994.
[55]
J. Vizioli, A. M. Richman, S. Uttenweiler-Joseph, C. Blass, and P. Bulet, “The defensin peptide of the malaria vector mosquito Anopheles gambiae: antimicrobial activities and expression in adult mosquitoes,” Insect Biochemistry and Molecular Biology, vol. 31, no. 3, pp. 241–248, 2001.
[56]
N. Boulanger, C. Lowenberger, P. Volf et al., “Characterization of a defensin from the sand fly Phlebotomus duboscqi induced by challenge with bacteria or the protozoan parasite Leishmania major,” Infection and Immunity, vol. 72, no. 12, pp. 7140–7146, 2004.
[57]
J.-L. Imler and J. A. Hoffmann, “Signaling mechanisms in the antimicrobial host defense of Drosophila,” Current Opinion in Microbiology, vol. 3, no. 1, pp. 16–22, 2000.
[58]
K. Senger, G. W. Armstrong, W. J. Rowell, J. M. Kwan, M. Markstein, and M. Levine, “Immunity regulatory DNAs share common organizational features in Drosophila,” Molecular Cell, vol. 13, no. 1, pp. 19–32, 2004.