全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Integrated Analysis of Long Noncoding RNA and Coding RNA Expression in Esophageal Squamous Cell Carcinoma

DOI: 10.1155/2013/480534

Full-Text   Cite this paper   Add to My Lib

Abstract:

Tumorigenesis is a complex dynamic biological process that includes multiple steps of genetic and epigenetic alterations, aberrant expression of noncoding RNA, and changes in the expression profiles of coding genes. We call the collection of those perturbations in genome space the “cancer initiatome.” Long noncoding RNAs (lncRNAs) are pervasively transcribed in the genome and they have key regulatory functions in chromatin remodeling and gene expression. Spatiotemporal variation in the expression of lncRNAs has been observed in development and disease states, including cancer. A few dysregulated lncRNAs have been studied in cancers, but the role of lncRNAs in the cancer initiatome remains largely unknown, especially in esophageal squamous cell carcinoma (ESCC). We conducted a genome-wide screen of the expression of lncRNAs and coding RNAs from ESCC and matched adjacent nonneoplastic normal tissues. We identified differentially expressed lncRNAs and coding RNAs in ESCC relative to their matched normal tissue counterparts and validated the result using polymerase chain reaction analysis. Furthermore, we identified differentially expressed lncRNAs that are co-located and co-expressed with differentially expressed coding RNAs in ESCC and the results point to a potential interaction between lncRNAs and neighboring coding genes that affect ether lipid metabolism, and the interaction may contribute to the development of ESCC. These data provide compelling evidence for a potential novel genomic biomarker of esophageal squamous cell cancer. 1. Introduction Esophageal squamous cell carcinoma (ESCC) is one of the most common types of cancer, and it ranks among the main causes of cancer deaths worldwide [1]. There are marked regional variation and exceptionally high incidence in certain areas of China. Despite advances in multidisciplinary treatment of ESCC, 5-year survival rate remains poor. The initiatome [2] of ESCC is a complex dynamic biological process in genome space, and it may include multiple steps of genetic and epigenetic alterations [3], aberrations in expression of noncoding RNA (e.g., microRNAs) [4], and changes in the expression profile of coding genes [5, 6]. In past decades, expression profiling of coding genes has defined important signaling pathways involved in tumorigenesis. The latest knowledge of actively transcribed long noncoding RNAs (lncRNAs) from high-throughput sequencing is revealing an even greater complexity about cancer genome regulatory networks. LncRNAs are endogenous cellular RNA transcripts, ranging from 200 to 100,000

References

[1]  J. Ferlay, H. R. Shin, F. Bray, D. Forman, C. Mathers, and D. M. Parkin, “Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008,” International Journal of Cancer, vol. 127, no. 12, pp. 2893–2917, 2010.
[2]  W. Wu and J. A. Chan, “Understanding the role of long noncoding RNAs in the cancer genome,” in Next Generation Sequencing in Cancer Research-Decoding Cancer Genome, W. Wu and H. Choudhry, Eds., pp. 199–215, Springer, New York, NY, USA, 2013.
[3]  J. J. Hao, T. Gong, Y. Zhang et al., “Characterization of gene rearrangements resulted from genomic structural aberrations in human esophageal squamous cell carcinoma KYSE150 cells,” Gene, vol. 513, no. 1, pp. 196–201, 2013.
[4]  M. Kano, N. Seki, N. Kikkawa et al., “MiR-145, miR-133a and miR-133b: tumor-suppressive miRNAs target FSCN1 in esophageal squamous cell carcinoma,” International Journal of Cancer, vol. 127, no. 12, pp. 2804–2814, 2010.
[5]  H. Su, N. Hu, H. H. Yang et al., “Global gene expression profiling and validation in esophageal squamous cell carcinoma and its association with clinical phenotypes,” Clinical Cancer Research, vol. 17, no. 9, pp. 2955–2966, 2011.
[6]  D. M. Greenawalt, C. Duong, G. K. Smyth et al., “Gene expression profiling of esophageal cancer: comparative analysis of Barrett's esophagus, adenocarcinoma, and squamous cell carcinoma,” International Journal of Cancer, vol. 120, no. 9, pp. 1914–1921, 2007.
[7]  I. Dunham, A. Kundaje, S. F. Aldred et al., “An integrated encyclopedia of DNA elements in the human genome,” Nature, vol. 489, no. 7414, pp. 57–74, 2012.
[8]  E. A. Gibb, C. J. Brown, and W. L. Lam, “The functional role of long non-coding RNA in human carcinomas,” Molecular Cancer, vol. 10, article 38, 2011.
[9]  A. L. Brunner, A. H. Beck, B. Edris et al., “Transcriptional profiling of lncRNAs and novel transcribed regions across a diverse panel of archived human cancers,” Genome Biology, vol. 13, no. 8, article R75, 2012.
[10]  M. Guttman and J. L. Rinn, “Modular regulatory principles of large non-coding RNAs,” Nature, vol. 482, no. 7385, pp. 339–346, 2012.
[11]  K. C. Wang, Y. W. Yang, B. Liu et al., “A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression,” Nature, vol. 472, no. 7341, pp. 120–126, 2011.
[12]  A. Dean, “On a chromosome far, far away: LCRs and gene expression,” Trends in Genetics, vol. 22, no. 1, pp. 38–45, 2006.
[13]  P. Ji, S. Diederichs, W. Wang et al., “MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer,” Oncogene, vol. 22, no. 39, pp. 8031–8041, 2003.
[14]  R. A. Gupta, N. Shah, K. C. Wang et al., “Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis,” Nature, vol. 464, no. 7291, pp. 1071–1076, 2010.
[15]  R. Kogo, T. Shimamura, K. Mimori et al., “Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers,” Cancer Research, vol. 71, no. 20, pp. 6320–6326, 2011.
[16]  K. Kim, I. Jutooru, G. Chadalapaka et al., “HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer,” Oncogene, vol. 32, pp. 1616–1625, 2013.
[17]  D. Li, J. Feng, T. Wu et al., “Long intergenic noncoding RNA HOTAIR is overexpressed and regulates PTEN methylation in laryngeal squamous cell carcinoma,” The American Journal of Pathology, vol. 182, no. 1, pp. 64–70, 2013.
[18]  A. Bhan, I. Hussain, K. I. Ansari, S. Kasiri, A. Bashyal, and S. S. Mandal, “Antisense transcript long noncoding RNA (lncRNA) HOTAIR is transcriptionally induced by estradiol,” Journal of Molecular Biology, vol. 425, no. 19, pp. 3707–3722, 2013.
[19]  D. Cejka, D. Losert, and V. Wacheck, “Short interfering RNA (siRNA): tool or therapeutic?” Clinical Science, vol. 110, no. 1, pp. 47–58, 2006.
[20]  J. R. Prensner and A. M. Chinnaiyan, “The emergence of lncRNAs in cancer biology,” Cancer Discovery, vol. 1, pp. 391–407, 2011.
[21]  W. Wu, T. D. Bhagat, X. Yang et al., “Hypomethylation of noncoding DNA regions and overexpression of the long noncoding RNA, AFAP1-AS1, in Barrett's esophagus and esophageal adenocarcinoma,” Gastroenterology, vol. 144, no. 5, pp. 956–966, 2013.
[22]  E. ?zgür, U. Mert, M. Isin, M. Okutan, N. Dalay, and U. Gezer, “Differential expression of long non-coding RNAs during genotoxic stress-induced apoptosis in HeLa and MCF-7 cells,” Clinical and Experimental Medicine, vol. 13, no. 2, pp. 119–126, 2013.
[23]  J. D. Li, Q. C. Feng, and J. S. Li, “Differential gene expression profiling of oesophageal squamous cell carcinoma by dna microarray and bioinformatics analysis,” Journal of International Medical Research, vol. 38, no. 6, pp. 1904–1912, 2010.
[24]  S. Ma, J. Y. Bao, P. S. Kwan et al., “Identification of PTK6, via RNA sequencing analysis, as a suppressor of esophageal squamous cell carcinoma,” Gastroenterology, vol. 143, pp. 675–686, 2012.
[25]  M. Tong, K. W. Chan, J. Y. Bao et al., “Rab25 is a tumor suppressor gene with antiangiogenic and anti-invasive activities in esophageal squamous cell carcinoma,” Cancer Research, vol. 72, no. 22, pp. 6024–6035, 2012.
[26]  Y. J. Geng, S. L. Xie, Q. Li, J. Ma, and G. Y. Wang, “Large intervening non-coding RNA HOTAIR is associated with hepatocellular carcinoma progression,” Journal of International Medical Research, vol. 39, no. 6, pp. 2119–2128, 2011.
[27]  X. Zhou, T. J. Lawrence, Z. He, C. R. Pound, J. Mao, and S. A. Bigler, “The expression level of lysophosphatidylcholine acyltransferase 1 (LPCAT1) correlates to the progression of prostate cancer,” Experimental and Molecular Pathology, vol. 92, no. 1, pp. 105–110, 2012.
[28]  Y. Morita, T. Sakaguchi, K. Ikegami et al., “Lysophosphatidylcholine acyltransferase 1 altered phospholipid composition and regulated hepatoma progression,” Journal of Hepatology, vol. 59, no. 2, pp. 292–299, 2013.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133