全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Comparison between Normalised and Unnormalised 454-Sequencing Libraries for Small-Scale RNA-Seq Studies

DOI: 10.1155/2012/281693

Full-Text   Cite this paper   Add to My Lib

Abstract:

Next-generation sequencing of transcriptomes (RNA-Seq) is being used increasingly in studies of nonmodel organisms. Here, we evaluate the effectiveness of normalising cDNA libraries prior to sequencing in a small-scale study of the zebra finch. We find that assemblies produced from normalised libraries had a larger number of contigs but used fewer reads compared to unnormalised libraries. Considerably more genes were also detected using the contigs produced from normalised cDNA, and microsatellite discovery was up to 73% more efficient in these. There was a positive correlation between the detected expression level of genes in normalised and unnormalised cDNA, and there was no difference in the number of genes identified as being differentially expressed between blood and spleen for the normalised and unnormalised libraries. We conclude that normalised cDNA libraries are preferable for many applications of RNA-Seq and that these can also be used in quantitative gene expression studies. 1. Introduction Next-generation sequencing (NGS) has revolutionised biological research and opened up the field of genomics for small-scale projects in nonmodel organisms [1–3]. A practical approach for studies of species with no prior genomics information available, and where budgets are limited, is to sequence only the expressed parts of the genomes (transcriptomes). This method, known as RNA-Seq [4], has the advantage that sequence characterisation is focused on functionally important regions of the genomes. An additional benefit is that information is obtained not only about gene sequence variation but also regarding gene expression levels [5]. While most publications on transcriptome characterisation in nonmodel organisms remain rather descriptive, question-oriented papers are also emerging in a number of fields, including speciation [6], conservation [7], and local adaptation [8]. The Roche 454 sequencing technology is probably still the most widely used NGS method for de novo characterisation of transcriptomes of nonmodel organisms, but other methods such as Illumina/Solexa and ABI SOLiD are becoming increasingly popular [9, 10]. Data from small-scale RNA-Seq studies are routinely used for a number of different purposes such as gene finding, marker identification, and expression studies [1]. Data from related species, genomic reference species [11], are often utilised to annotate whole-transcriptome sequence datasets or to identify specific genes of interest. Molecular markers such as microsatellites, indels, and SNPs can be efficiently mined from NGS transcriptome

References

[1]  R. Ekblom and J. Galindo, “Applications of next generation sequencing in molecular ecology of non-model organisms,” Heredity, vol. 107, no. 1, pp. 1–15, 2011.
[2]  M. E. Hudson, “Sequencing breakthroughs for genomic ecology and evolutionary biology,” Molecular Ecology Resources, vol. 8, no. 1, pp. 3–17, 2008.
[3]  J. Shendure and H. Ji, “Next-generation DNA sequencing,” Nature Biotechnology, vol. 26, no. 10, pp. 1135–1145, 2008.
[4]  Z. Wang, M. Gerstein, and M. Snyder, “RNA-Seq: a revolutionary tool for transcriptomics,” Nature Reviews Genetics, vol. 10, no. 1, pp. 57–63, 2009.
[5]  P. A. C. 't Hoen, Y. Ariyurek, H. H. Thygesen et al., “Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms,” Nucleic Acids Research, vol. 36, no. 21, article no. e141, 2008.
[6]  J. B. W. Wolf, T. Bayer, B. Haubold, M. Schilhabel, P. Rosenstiel, and D. Tautz, “Nucleotide divergence vs. gene expression differentiation: comparative transcriptome sequencing in natural isolates from the carrion crow and its hybrid zone with the hooded crow,” Molecular Ecology, vol. 19, no. 1, pp. 162–175, 2010.
[7]  N. J. Ouborg, C. Pertoldi, V. Loeschcke, R. K. Bijlsma, and P. W. Hedrick, “Conservation genetics in transition to conservation genomics,” Trends in Genetics, vol. 26, no. 4, pp. 177–187, 2010.
[8]  E. Meyer, G. V. Aglyamova, and M. V. Matz, “Profiling gene expression responses of coral larvae (Acropora millepora) to elevated temperature and settlement inducers using a novel RNA-Seq procedure,” Molecular Ecology, vol. 20, no. 17, pp. 3599–3616, 2011.
[9]  M. V. Everett, E. D. Grau, and J. E. Seeb, “Short reads and nonmodel species: exploring the complexities of next-generation sequence assembly and SNP discovery in the absence of a reference genome,” Molecular Ecology Resources, vol. 11, supplement 1, pp. 93–108, 2011.
[10]  Z. Wang, B. Fang, J. Chen et al., “De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweetpotato (Ipomoea batatas),” BMC Genomics, vol. 11, no. 1, article no. 726, 2010.
[11]  C. W. Wheat, “Rapidly developing functional genomics in ecological model systems via 454 transcriptome sequencing,” Genetica, vol. 138, no. 4, pp. 433–451, 2010.
[12]  J. P. Der, M. S. Barker, N. J. Wickett, C. W. dePamphilis, and P. G. Wolf, “De novo characterization of the gametophyte transcriptome in bracken fern, Pteridium aquilinum,” BMC Genomics, vol. 12, article 99, 2011.
[13]  S. Kaur, N. O. I. Cogan, L. W. Pembleton et al., “Transcriptome sequencing of lentil based on second-generation technology permits large-scale unigene assembly and SSR marker discovery,” BMC Genomics, vol. 12, article 265, 2011.
[14]  U. V?li, M. Brandstr?m, M. Johansson, and H. Ellegren, “Insertion-deletion polymorphisms (indels) as genetic markers in natural populations,” BMC Genetics, vol. 9, article 8, 2008.
[15]  R. J. A. Buggs, S. Chamala, W. Wu et al., “Characterization of duplicate gene evolution in the recent natural allopolyploid Tragopogon miscellus by next-generation sequencing and Sequenom iPLEX MassARRAY genotyping,” Molecular Ecology, vol. 19, no. 1, pp. 132–146, 2010.
[16]  A. Barakat, D. S. Diloreto, Y. Zhang et al., “Comparison of the transcriptomes of American chestnut (Castanea dentata) and Chinese chestnut (Castanea mollissima) in response to the chestnut blight infection,” BMC Plant Biology, vol. 9, article no. 51, 2009.
[17]  E. Kristiansson, N. Asker, L. F?rlin, and D. G. J. Joakim, “Characterization of the Zoarces viviparus liver transcriptome using massively parallel pyrosequencing,” BMC Genomics, vol. 10, article no. 345, 2009.
[18]  P. A. Zhulidov, E. A. Bogdanova, A. S. Shcheglov et al., “Simple cDNA normalization using kamchatka crab duplex-specific nuclease,” Nucleic Acids Research, vol. 32, no. 3, article e37, 2004.
[19]  E. A. Bogdanova, I. A. Shagina, E. Mudrik et al., “DSN depletion is a simple method to remove selected transcripts from cDNA populations,” Molecular Biotechnology, vol. 41, no. 3, pp. 247–253, 2009.
[20]  M. C. Hale, C. R. McCormick, J. R. Jackson, and J. A. DeWoody, “Next-generation pyrosequencing of gonad transcriptomes in the polyploid lake sturgeon (Acipenser fulvescens): the relative merits of normalization and rarefaction in gene discovery,” BMC Genomics, vol. 10, article no. 203, 2009.
[21]  P. Yang, X. Li, M. J. Shipp, J. M. Shockey, and E. B. Cahoon, “Mining the bitter melon (Momordica charantia L.) seed transcriptome by 454 analysis of non-normalized and normalized cDNA populations for conjugated fatty acid metabolism-related genes,” BMC Plant Biology, vol. 10, article 250, 2010.
[22]  B. Ewen-Campen, N. Shaner, K. A. Panfilio, Y. Suzuki, S. Roth, and C. G. Extavour, “The maternal and early embryonic transcriptome of the milkweed bug Oncopeltus fasciatus,” BMC Genomics, vol. 12, article 61, 2011.
[23]  C. Sun, Y. Li, Q. Wu et al., “De novo sequencing and analysis of the American ginseng root transcriptome using a GS FLX Titanium platform to discover putative genes involved in ginsenoside biosynthesis,” BMC Genomics, vol. 11, article 262, 2010.
[24]  J. Stapley, T. R. Birkhead, T. Burke, and J. Slate, “A linkage map of the zebra finch Taeniopygia guttata provides new insights into avian genome evolution,” Genetics, vol. 179, no. 1, pp. 651–667, 2008.
[25]  S. F. Altschul, T. L. Madden, A. A. Sch?ffer et al., “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs,” Nucleic Acids Research, vol. 25, no. 17, pp. 3389–3402, 1997.
[26]  P. Flicek, M. R. Amode, D. Barrell et al., “Ensembl 2011,” Nucleic Acids Research, vol. 39, supplement 1, pp. D800–D806, 2011.
[27]  G. Smyth, R. Gentleman, V. J. Carey, W. Huber, R. A. Irizarry, and S. Dudoit, “Limma: Linear Models for Microarray Data,” in Bioinformatics and Computational Biology Solutions Using R and Bioconductor, pp. 397–420, Springer, New York, NY, USA, 2005.
[28]  R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2008.
[29]  R. C. Gentleman, V. J. Carey, D. M. Bates et al., “Bioconductor: open software development for computational biology and bioinformatics,” Genome Biology, vol. 5, no. 10, article R80, 2004.
[30]  M. D. Robinson, D. J. McCarthy, and G. K. Smyth, “edgeR: a bioconductor package for differential expression analysis of digital gene expression data,” Bioinformatics, vol. 26, no. 1, pp. 139–140, 2010.
[31]  Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: a practical and powerful approach to multiple testing,” Journal of the Royal Statistical Society. Series B, vol. 57, pp. 289–300, 1995.
[32]  B. C. Faircloth, “MSATCOMMANDER: detection of microsatellite repeat arrays and automated, locus-specific primer design,” Molecular Ecology Resources, vol. 8, no. 1, pp. 92–94, 2008.
[33]  R. Ekblom, C. N. Balakrishnan, T. Burke, and J. Slate, “Digital gene expression analysis of the zebra finch genome,” BMC Genomics, vol. 11, no. 1, article no. 219, 2010.
[34]  D. Schwarz, H. M. Robertson, J. L. Feder et al., “Sympatric ecological speciation meets pyrosequencing: sampling the transcriptome of the apple maggot Rhagoletis pomonella,” BMC Genomics, vol. 10, article no. 633, 2009.
[35]  F. Cheung, J. Win, J. M. Lang et al., “Analysis of the Pythium ultimum transcriptome using Sanger and pyrosequencing approaches,” BMC Genomics, vol. 9, article no. 542, 2008.
[36]  D. A. Hahn, G. J. Ragland, D. D. Shoemaker, and D. L. Denlinger, “Gene discovery using massively parallel pyrosequencing to develop ESTs for the flesh fly Sarcophaga crassipalpis,” BMC Genomics, vol. 10, article no. 234, 2009.
[37]  C. R. Primmer, “From conservation genetics to conservation genomics,” Annals of the New York Academy of Sciences, vol. 1162, pp. 357–368, 2009.
[38]  T. L. Parchman, K. S. Geist, J. A. Grahnen, C. W. Benkman, and C. A. Buerkle, “Transcriptome sequencing in an ecologically important tree species: assembly, annotation, and marker discovery,” BMC Genomics, vol. 11, no. 1, article no. 180, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133