We here report the first complete mitochondrial (mt) genome of a skipper, Ctenoptilum vasava Moore, 1865 (Lepidoptera: Hesperiidae: Pyrginae). The mt genome of the skipper is a circular molecule of 15,468?bp, containing 2 ribosomal RNA genes, 24 putative transfer RNA (tRNA), genes including an extra copy of trnS (AGN) and a tRNA-like insertion trnL (UUR), 13 protein-coding genes and an AT-rich region. All protein-coding genes (PCGs) are initiated by ATN codons and terminated by the typical stop codon TAA or TAG, except for COII which ends with a single T. The intergenic spacer sequence between trnS (AGN) and ND1 genes also contains the ATACTAA motif. The AT-rich region of 429?bp is comprised of nonrepetitive sequences, including the motif ATAGA followed by an 19?bp poly-T stretch, a microsatellite-like (AT)3 (TA)9 element next to the ATTTA motif, an 11?bp poly-A adjacent to tRNAs. Phylogenetic analyses (ML and BI methods) showed that Papilionoidea is not a natural group, and Hesperioidea is placed within the Papilionoidea as a sister to ((Pieridae Lycaenidae) Nymphalidae) while Papilionoidae is paraphyletic to Hesperioidea. This result is remarkably different from the traditional view where Papilionoidea and Hesperioidea are considered as two distinct superfamilies. 1. Introduction The taxonomic status and the phylogenetic position of skippers (Hesperiidae) within Lepidoptera remain a controversial issue [1–3]. Due to the distinct differences between the skippers and the typical butterflies/moths in terms of morphological and behavioral characteristics, such as the short stout bodies, hooked antennae, and rapid skipping flight, the skippers were previously proposed to represent a separate group that is distinct from butterflies/moths in lepidopterans. More specifically, the skippers are assigned to the family Hesperiidae in a monotypic superfamily Hesperioidea, a sister lineage to the typical rhopaloceran butterflies, which mostly belong to superfamily Papilionoidea (true butterflies) [2, 4, 5]. In addition, the three superfamilies Hesperioidea, Papilionoidea, and Hedyloidea share numerous morphological characteristics, particularly in their egg, larval, and pupal stages, and thus were considered to be a large natural group [2]. The Lepidoptera is one of the largest groups of insects, accounting for more than 160,000 species. Despite of the huge taxonomic diversity, the current information on the lepidopteran mt genomes is very limited. Only 40 lepidopteran mt genomes were sequenced, including 10 butterfly species such as Coreana raphaelis [6], Artogeia
References
[1]
C. A. Bridges, Catalogue of Hesperiidae (Lepidoptera: Rhopalocera), Urbana, Ill, USA, 1988.
[2]
P. R. Ackery, R. de Jong, and R. I. Vane-Wright, “The butterflies: hedyloidea, hesperioidea and papilionoidae,” in Handbook of Zoology, A Natural History of the Phyla of the Animal Kingdom Vol. 4, Arthropoda: Insecta—Part 35, Lepidoptera, Moths and Butterflies, Evolution, Systematics and Biogeography, N. P. Kristensen, Ed., vol. 1, pp. 263–300, 1999.
[3]
P. Y. Gorbunov, The butterflies of Russia: classification, genitalia, keys for identification (Lepidoptera: Hesperioidea and Papilionoidea), Ph.D. thesis, Tezis Izdatel Stvo, Ekaterinburg, Russia, 2001.
[4]
H. Chiba and J. N. Eliot, “A review of the genus Parnara Moore ( Lepidoptera: Hesperiidae ), with special reference to the Asian species,” Tyo to Ga, vol. 42, no. 3, pp. 179–194, 1991.
[5]
I. O. Chou, Classification and Indentification of Chinese Butterflies, Henan Scientific and Technological Publishing House, Zhengzhou, China, 1998.
[6]
I. Kim, E. M. Lee, K. Y. Seol et al., “The mitochondrial genome of the Korean hairstreak, Coreana raphaelis (Lepidoptera: Lycaenidae),” Insect Molecular Biology, vol. 15, no. 2, pp. 217–225, 2006.
[7]
G. Y. Hong, S. T. Jiang, M. Yu et al., “The complete nucleotide sequence of the mitochondrial genome of the cabbage butterfly, Artogeia melete (Lepidoptera: Pieridae),” Acta Biochimica et Biophysica Sinica, vol. 41, no. 6, pp. 446–455, 2009.
[8]
M. I. Kim, J. Y. Baek, M. J. Kim et al., “Complete nucleotide sequence and organization of the mitogenome of the red-spotted apollo butterfly, Parnassius bremeri (Lepidoptera: Papilionidae) and comparison with other lepidopteran insects,” Molecules and Cells, vol. 28, no. 4, pp. 347–363, 2009.
[9]
J. Hu, J. S. Hao, D. X. Zhang, D. Huang, S. Cameron, and C. D. Zhu, “The complete mitochondrial genome of the yellow coaster, Acraea issoria (Lepidoptera: Nymphalidae: Heliconiinae: Acraeini): Sequence, gene organization and a unique tRNA translocation event,” Molecular Biology Reports, vol. 37, no. 7, pp. 3431–3438, 2010.
[10]
Z. H. Mao, J. S. Hao, G. P. Zhu, J. Hu, M. M. Si, and C. D. Zhu, “Sequencing and analysis of the complete mitochondrial genome of Pieris rapae Linnaeus (Lepidoptera: Pieridae),” Acta Entomologica Sinica, vol. 53, no. 11, pp. 1295–1304, 2010.
[11]
M. J. Kim, X. L. Wan, K. G. Kim, J. S. Hwang, and I. Kim, “Complete nucleotide sequence and organization of the mitogenome of endangered Eumenis autonoe (Lepidoptera: Nymphalidae),” African Journal of Biotechnology, vol. 9, no. 5, pp. 735–754, 2010.
[12]
J. Xia, J. Hu, G. P. Zhu, C. D. Zhu, and J. S. Hao, “Complete mitochondrial DNA sequence of the Calinaga davidis,” Acta Entomologica Sinica, vol. 54, no. 5, pp. 555–565, 2011.
[13]
K. Yukuhiro, H. Sezutsu, M. Itoh, K. Shimizu, and Y. Banno, “Significant levels of sequence divergence and gene rearrangements have occurred between the mitochondrial genomes of the wild mulberry silkmoth, Bombyx mandarina, and its close relative, the domesticated silkmoth, Bombyx mori,” Molecular Biology and Evolution, vol. 19, no. 8, pp. 1385–1389, 2002.
[14]
E. S. Lee, K. S. Shin, M. S. Kim, H. Park, S. Cho, and C. B. Kim, “The mitochondrial genome of the smaller tea tortrix Adoxophyes honmai (Lepidoptera: Tortricidae),” Gene, vol. 373, no. 1-2, pp. 52–57, 2006.
[15]
Y. Liu, Y. Li, M. Pan et al., “The complete mitochondrial genome of the Chinese oak silkmoth, Antheraea pernyi (Lepidoptera: Saturniidae),” Acta Biochimica et Biophysica Sinica, vol. 40, no. 8, pp. 693–703, 2008.
[16]
P. Salvato, M. Simonato, A. Battisti, and E. Negrisolo, “The complete mitochondrial genome of the bag-shelter moth Ochrogaster lunifer (Lepidoptera, Notodontidae),” BMC Genomics, vol. 9, article 331, 2008.
[17]
S. L. Cameron and M. F. Whiting, “The complete mitochondrial genome of the tobacco hornworm, Manduca sexta, (Insecta: Lepidoptera: Sphingidae), and an examination of mitochondrial gene variability within butterflies and moths,” Gene, vol. 408, no. 1-2, pp. 112–123, 2008.
[18]
L. Yang, Z. J. Wei, G. Y. Hong, S. T. Jiang, and L. P. Wen, “The complete nucleotide sequence of the mitochondrial genome of Phthonandria atrilineata (Lepidoptera: Geometridae),” Molecular Biology Reports, vol. 36, no. 6, pp. 1441–1449, 2009.
[19]
S. T. Jiang, G. Y. Hong, M. Yu et al., “Characterization of the complete mitochondrial genome of the giant silkworm moth, Eriogyna pyretorum (Lepidoptera: Saturniidae),” International Journal of Biological Sciences, vol. 5, no. 4, pp. 351–365, 2009.
[20]
S. R. Kim, M. I. Kim, M. Y. Hong et al., “The complete mitogenome sequence of the Japanese oak silkmoth, Antheraea yamamai (Lepidoptera: Saturniidae),” Molecular Biology Reports, vol. 36, no. 7, pp. 1871–1880, 2009.
[21]
M. Y. Hong, E. M. Lee, Y. H. Jo et al., “Complete nucleotide sequence and organization of the mitogenome of the silk moth Caligula boisduvalii (Lepidoptera: Saturniidae) and comparison with other lepidopteran insects,” Gene, vol. 413, no. 1-2, pp. 49–57, 2008.
[22]
L. Fang, L. Wang, S. Wu et al., “The complete mitochondrial genome of the fall webworm, Hyphantria cunea (Lepidoptera: Arctiidae),” International Journal of Biological Sciences, vol. 6, no. 2, pp. 172–186, 2010.
[23]
Y. J. Zhu, R. Fang, G. L. Zhou, J. Ye, and J. P. Yi, “The complete sequence determination and analysis of Lymantria dispar mitochondrial genome,” National Center for Biotechnology Information, vol. 24, no. 4, pp. 6–11, 2009.
[24]
J. Yin, G. Y. Hong, A. M. Wang, Y. Z. Cao, and Z. J. Wei, “Mitochondrial genome of the cotton bollworm Helicoverpa armigera (Lepidoptera: Noctuidae) and comparison with other Lepidopterans,” Mitochondrial DNA, vol. 21, no. 5, pp. 160–169, 2010.
[25]
J. L. Zhao, Y. Y. Zhang, A. R. Luo, G. F. Jiang, S. L. Cameron, and C. D. Zhu, “The complete mitochondrial genome of Spilonota lechriaspis Meyrick (Lepidoptera: Tortricidae),” Molecular Biology Reports, vol. 38, pp. 3757–3764, 2011.
[26]
Y. J. Gong, B. C. Shi, Z. J. Kang, F. Zhang, and S. J. Wei, “The complete mitochondrial genome of the oriental fruit moth Grapholita molesta (Busck) (Lepidoptera: Tortricidae),” Molecular Biology Reports, vol. 39, no. 3, pp. 2893–2900, 2011.
[27]
M. H. Pan, Q. Y. Yu, Y. L. Xia et al., “Characterization of mitochondrial genome of Chinese wild mulberry silkworm, Bomyx mandarina (Lepidoptera: Bombycidae),” Science in China C, vol. 51, no. 8, pp. 693–701, 2008.
[28]
W. W. Li, X. Y. Zhang, and Z. X. Fan, “Structural characteristics and phylogenetic analysis of the mitochondrial genome of the Sugarcane Borer, Diatraea saccharalis (Lepidoptera: Crambidae),” DNA and Cell Biology, vol. 30, no. 1, pp. 3–8, 2011.
[29]
B. S. Coates, D. V. Sumerford, R. L. Hellmich, and L. C. Lewis, “Partial mitochondrial genome sequences of Ostrinia nubilalis and Ostrinia furnicalis,” International Journal of Biological Sciences, vol. 1, no. 1, pp. 13–18, 2005.
[30]
X. C. Wang, X. Y. Sun, Q. Q. Sun, et al., “The complete mitochondrial genome of the laced fritillary Argyreus hyperbius (Lepidoptera: Nymphalidae),” Zoology Research, vol. 32, no. 5, pp. 465–475, 2011.
[31]
X. Feng, D. F. Liu, N. X. Wang, C. D. Zhu, and G. F. Jiang, “The mitochondrial genome of the butterfly Papilio xuthus (Lepidoptera: Papilionidae) and related phylogenetic analyses,” Molecular Biology Reports, vol. 37, no. 8, pp. 3877–3888, 2010.
[32]
J. S. Hao, C. X. Li, X. Y. Sun, and Q. Yang, “Phylogeny and divergence time estimation of cheilostome bryozoans based on mitochodrial 16S rRNA sequences,” Chinese Science Bulletin, vol. 12, pp. 1205–1211, 2005.
[33]
C. Simon, F. Frati, A. Bekenbach, B. Crespi, H. Liu, and P. Flook, “Evolution, weighting, and phylogenetic utility of mitochondrial genesequences and a compilation of conserved polymerase chainreaction primers,” Annals of the Entomological Society of America, vol. 87, no. 6, pp. 651–701, 1994.
[34]
V. K. Singh, A. K. Mangalam, S. Dwivedi, and S. Naik, “Primer premier: Program for design of degenerate primers from a protein sequence,” BioTechniques, vol. 24, no. 2, pp. 318–319, 1998.
[35]
T. A. Hall, “BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT,” Nucleic Acids Symposium Series, no. 41, pp. 95–98, 1999.
[36]
J. D. Thompson, T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins, “The clustal X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools,” Nucleic Acids Research, vol. 24, pp. 4876–4882, 1997.
[37]
S. Kumar, K. Tamura, and M. Nei, “MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment,” Briefings in Bioinformatics, vol. 5, no. 2, pp. 150–163, 2004.
[38]
T. M. Lowe and S. R. Eddy, “tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence,” Nucleic Acids Research, vol. 25, no. 5, pp. 955–964, 1997.
[39]
G. Benson, “Tandem repeats finder: a program to analyze DNA sequences,” Nucleic Acids Research, vol. 27, no. 2, pp. 573–580, 1999.
[40]
D. L. Swofford, PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4.10, Sinauer Associates, Sunderland, Mass, USA, 2002.
[41]
D. Posada and K. A. Crandall, “Modeltest: testing the model of DNA substitution,” Bioinformatics, vol. 14, no. 9, pp. 817–818, 1998.
[42]
J. P. Huelsenbeck and F. Ronquist, “Mrbayes: bayesian inference of phylogenetic trees,” Bioinformatics, vol. 17, no. 8, pp. 754–755, 2001.
[43]
J. D. Fenn, S. L. Cameron, and M. F. Whiting, “The complete mitochondrial genome sequence of the Mormon cricket (Anabrus simplex: Tettigoniidae: Orthoptera) and an analysis of control region variability,” Insect Molecular Biology, vol. 16, no. 2, pp. 239–252, 2007.
[44]
M. M. Yamauchi, M. U. Miya, and M. Nishida, “Complete mitochondrial DNA sequence of the Japanese spiny lobster, Panulirus japonicus (Crustacea: Decapoda),” Gene, vol. 295, no. 1, pp. 89–96, 2002.
[45]
F. Nardi, A. Carapelli, R. Dallai, and F. Frati, “The mitochondrial genome of the olive fly Bactrocera oleae two haplotypes from distant geographical locations,” Insect Molecular Biology, vol. 12, no. 6, pp. 605–611, 2003.
[46]
S. Lutz-Bonengel, T. Sanger, and S. Pollak, “Different methods to determine length heteroplasmy within the mitochondrial control region,” International Journal of Legal Medicine, vol. 118, no. 5, pp. 274–281, 2004.
[47]
K. Ogoh and Y. Ohmiya, “Complete mitochondrial DNA sequence of the sea-firefly, Vargula hilgendorfii (Crustacea, Ostracoda) with duplicate control regions,” Gene, vol. 327, no. 1, pp. 131–139, 2004.
[48]
P. K. Flook, C. H. F. Rowell, and G. Gellissen, “The sequence, organization, and evolution of the Locusta migratoria mitochondrial genome,” Journal of Molecular Evolution, vol. 41, no. 6, pp. 928–941, 1995.
[49]
C. D. Beard, S. M. Hamm, and F. H. Collins, “The mitochondrial genome of the mosquito Anopheles gambiae: DNA sequence, genome organization, and comparisons with mitochondrial sequences of other insects,” Insect Molecular Biology, vol. 2, no. 2, pp. 103–124, 1993.
[50]
S. E. Mitchell, A. F. Cockburn, and J. A. Seawright, “The mitochondrial genome of Anopheles quadrimaculatus species A: complete nucleotide sequence and gene organization,” Genome, vol. 36, no. 6, pp. 1058–1073, 1993.
[51]
L. Spanos, G. Koutroumbas, M. Kotsyfakis, and C. Louis, “The mitochondrial genome of the Mediterranean fruit fly, Ceratitis capitata,” Insect Molecular Biology, vol. 9, no. 2, pp. 139–144, 2000.
[52]
K. Wilson, V. Cahill, E. Ballment, and J. Benzie, “The complete sequence of the mitochondrial genome of the crustacean Penaeus monodon: are malacostracan crustaceans more closely related to insects than to branchiopods?” Molecular Biology and Evolution, vol. 17, no. 6, pp. 863–874, 2000.
[53]
D. Ojala, C. Merkel, R. Gelfand, and G. Attardi, “The tRNA genes punctuate the reading of genetic information in human mitochondrial DNA,” Cell, vol. 22, no. 2, pp. 393–403, 1980.
[54]
D. Ojala, J. Montoya, and G. Attardi, “tRNA punctuation model of RNA processing in human mitochondria,” Nature, vol. 290, no. 5806, pp. 470–474, 1981.
[55]
C. Lu, Y. Q. Liu, S. Y. Liao, et al., “Complete sequence determination and analysis of Bombyx mori mitochondrial genome,” Journal of Agricultural Biotechnology, vol. 10, no. 2, pp. 163–170, 2002.
[56]
M. F. J. Taylor, S. W. Mckechnie, N. Pierce, and M. Kreitman, “The lepidopteran mitochondrial control region: structure and evolution,” Molecular Biology and Evolution, vol. 10, no. 6, pp. 1259–1272, 1993.
[57]
J. W. Taanman, “The mitochondrial genome: structure, transcription, translation and replication,” Biochimica et Biophysica Acta, vol. 1410, no. 2, pp. 103–123, 1999.
[58]
J. Minet, “Tentative reconstruction of the ditrysian phylogeny (Lepidoptera: Glossata),” Entomologica Scandinavica, vol. 22, pp. 69–95, 1991.
[59]
J. Minet, “The Bombycoidea: phylogeny and higher classification (Lepidoptera : Glossata),” Entomologica Scandinavica, vol. 25, no. 1, pp. 63–88, 1994.
[60]
E. S. Nielsen, “Phylogeny of major lepidopteran groups,” in The Hierarchy of Life, B. Fernholm, K. Bremer, and H. J?rnvall, Eds., pp. 281–294, Elsevier, Amsterdam, The Netherlands, 1989.
[61]
J. A. Scott, “On the monophyly of the macrolepidoptera, including a reassessment of their relationship to cossoidea and castnioidea, and a reassignment of mimallonidae to pyraloidea,” The Journal of Research on the Lepidoptera, vol. 25, no. 1, pp. 30–38, 1986.
[62]
M. Mutanen, N. Wahlberg, and L. Kaila, “Comprehensive gene and taxon coverage elucidates radiation patterns in moths and butterflies,” Proceedings of the Royal Society B, vol. 277, no. 1695, pp. 2839–2848, 2010.
[63]
N. Wahlberg, M. F. Braby, A. V. Z. Brower et al., “Synergistic effects of combining morphological and molecular data in resolving the phylogeny of butterflies and skippers,” Proceedings of the Royal Society B, vol. 272, no. 1572, pp. 1577–1586, 2005.
[64]
J. C. Regier, C. P. Cook, C. Mitter, and A. Hussey, “A phylogenetic study of the 'bombycoid complex' (Lepidoptera) using five protein-coding nuclear genes, with comments on the problem of macrolepidopteran phylogeny,” Systematic Entomology, vol. 33, no. 1, pp. 175–189, 2008.