Recent advances in high-throughput technologies have transformed methodologies employed to study cell-specific epigenomes and the approaches to investigate complex cellular phenotypes. Application of next-generation sequencing technology in the skeletal muscle differentiation field is rapidly extending our knowledge on how chromatin modifications, transcription factors and chromatin regulators orchestrate gene expression pathways guiding myogenesis. Here, we review recent biological insights gained by the application of next-generation sequencing techniques to decode the epigenetic profile and gene regulatory networks underlying skeletal muscle differentiation. 1. Introduction During developmental processes, in response to external cues, changes in chromatin involving activation and repression of transcription factors and chromatin regulators (e.g., chromatin-modifying enzymes) underlie commitment of specific cells to defined lineages. Importantly, transcription factors and chromatin modifiers are also able to alter the cellular expression program to maintain cell identity even upon removal of the initiating differentiation stimuli [1]. During development and in adulthood, cellular identity is established and maintained by finely tuned mechanisms of gene repression and expression, preserved through rounds of cell division. Differentiation processes are achieved by sculpting cell-specific epigenomes, which establish and maintain cellular diversity [2]. Epigenetic information relies on several elements, such as histone modifications, histone variants, nucleosome accessibility, DNA methylation and hydroxymethylation, and nuclear organization. These chromatin states influence access of transcription factors and enzymes to the underlying DNA [1]. 2. Epigenetic Regulators of Myogenesis Myogenic lineage commitment and execution of the terminal differentiation program relies on the activity of the paired-box transcription factors Pax3 and Pax7 and of the muscle regulatory factors (MRFs) MyoD, Myf5, MRF4, and myogenin [3]. Myogenesis is a multistep process, which restricts cell fate and commits cells to become skeletal muscle. During embryonic development, myogenic precursor cells derived from the somites express Pax3 and Pax3/Pax7 and are capable of proliferation and self-renewal [4, 5]. In response to extrinsic signals, Pax3+ cells are committed to myoblasts and undergo terminal myogenic differentiation through the transcriptional network activated by MRFs. During postnatal life, muscle growth relies on satellite cells, which are a subpopulation of
References
[1]
M. J. Barrero, S. Boué, and J. C. Izpisúa Belmonte, “Epigenetic mechanisms that regulate cell identity,” Cell Stem Cell, vol. 7, no. 5, pp. 565–570, 2010.
[2]
C. Prezioso and V. Orlando, “Polycomb proteins in mammalian cell differentiation and plasticity,” FEBS Letters, vol. 585, no. 13, pp. 2067–2077, 2011.
[3]
V. Sartorelli and A. H. Juan, “Sculpting chromatin beyond the double helix: epigenetic control of skeletal myogenesis,” Current Topics in Developmental Biology, vol. 96, pp. 57–83, 2011.
[4]
M. Maroto, R. Reshef, A. E. Münsterberg, S. Koester, M. Goulding, and A. B. Lassar, “Ectopic Pax-3 activates MyoD and Myf-5 expression in embryonic mesoderm and neural tissue,” Cell, vol. 89, no. 1, pp. 139–148, 1997.
[5]
S. Tajbakhsh and G. Cossu, “Establishing myogenic identity during somitogenesis,” Current Opinion in Genetics and Development, vol. 7, no. 5, pp. 634–641, 1997.
[6]
D. Palacios and P. L. Puri, “The epigenetic network regulating muscle development and regeneration,” Journal of Cellular Physiology, vol. 207, no. 1, pp. 1–11, 2006.
[7]
V. Guasconi and P. L. Puri, “Chromatin: the interface between extrinsic cues and the epigenetic regulation of muscle regeneration,” Trends in Cell Biology, vol. 19, no. 6, pp. 286–294, 2009.
[8]
E. Perdiguero, P. Sousa-Victor, E. Ballestar, and P. Mu?oz-Cánoves, “Epigenetic regulation of myogenesis,” Epigenetics, vol. 4, no. 8, pp. 541–550, 2009.
[9]
I. W. McKinnell, J. Ishibashi, F. Le Grand et al., “Pax7 activates myogenic genes by recruitment of a histone methyltransferase complex,” Nature Cell Biology, vol. 10, no. 1, pp. 77–84, 2008.
[10]
S. Rampalli, L. Li, E. Mak et al., “p38 MAPK signaling regulates recruitment of Ash2L-containing methyltransferase complexes to specific genes during differentiation,” Nature Structural and Molecular Biology, vol. 14, no. 12, pp. 1150–1156, 2007.
[11]
Z. Wang, C. Zang, K. Cui et al., “Genome-wide Mapping of HATs and HDACs Reveals Distinct Functions in Active and Inactive Genes,” Cell, vol. 138, no. 5, pp. 1019–1031, 2009.
[12]
M. Fulco, R. L. Schiltz, S. Iezzi et al., “Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state,” Molecular Cell, vol. 12, no. 1, pp. 51–62, 2003.
[13]
R. Margueron and D. Reinberg, “The Polycomb complex PRC2 and its mark in life,” Nature, vol. 469, no. 7330, pp. 343–349, 2011.
[14]
R. Eskeland, M. Leeb, G. R. Grimes et al., “Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination,” Molecular Cell, vol. 38, no. 3, pp. 452–464, 2010.
[15]
G. Caretti, M. Di Padova, B. Micales, G. E. Lyons, and V. Sartorelli, “The polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation,” Genes and Development, vol. 18, pp. 2627–2638, 2005.
[16]
C. L. Fisher and A. G. Fisher, “Chromatin states in pluripotent, differentiated, and reprogrammed cells,” Current Opinion in Genetics and Development, vol. 21, no. 2, pp. 140–146, 2011.
[17]
L. A. Boyer, K. Plath, J. Zeitlinger et al., “Polycomb complexes repress developmental regulators in murine embryonic stem cells,” Nature, vol. 441, no. 7091, pp. 349–353, 2006.
[18]
T. S. Mikkelsen, M. Ku, D. B. Jaffe et al., “Genome-wide maps of chromatin state in pluripotent and lineage-committed cells,” Nature, vol. 448, no. 7153, pp. 553–560, 2007.
[19]
B. E. Bernstein, T. S. Mikkelsen, X. Xie et al., “A bivalent chromatin structure marks key developmental genes in embryonic stem cells,” Cell, vol. 125, no. 2, pp. 315–326, 2006.
[20]
D. Palacios, C. Mozzetta, S. Consalvi et al., “TNF/p38α/polycomb signaling to Pax7 locus in satellite cells links inflammation to the epigenetic control of muscle regeneration,” Cell Stem Cell, vol. 7, no. 4, pp. 455–469, 2010.
[21]
A. Blais, M. Tsikitis, D. Acosta-Alvear, R. Sharan, Y. Kluger, and B. D. Dynlacht, “An initial blueprint for myogenic differentiation,” Genes and Development, vol. 19, no. 5, pp. 553–569, 2005.
[22]
A. H. Juan, A. Derfoul, X. Feng et al., “Polycomb EZH2 controls self-renewal and safeguards the transcriptional identity of skeletal muscle stem cells,” Genes and Development, vol. 25, no. 8, pp. 789–794, 2011.
[23]
Y. Ge and J. Chen, “MicroRNAs in skeletal myogenesis,” Cell Cycle, vol. 10, no. 3, pp. 441–448, 2011.
[24]
M. Cesana, D. Cacchiarelli, I. Legnini et al., “A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA,” Cell, vol. 147, no. 2, pp. 358–369, 2011.
[25]
A. H. Juan, R. M. Kumar, J. G. Marx, R. A. Young, and V. Sartorelli, “Mir-214-Dependent Regulation of the Polycomb Protein Ezh2 in Skeletal Muscle and Embryonic Stem Cells,” Molecular Cell, vol. 36, no. 1, pp. 61–74, 2009.
[26]
C. F. Wong and R. L. Tellam, “MicroRNA-26a targets the histone methyltransferase enhancer of zeste homolog 2 during myogenesis,” Journal of Biological Chemistry, vol. 283, no. 15, pp. 9836–9843, 2008.
[27]
J. F. Chen, E. M. Mandel, J. M. Thomson et al., “The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation,” Nature Genetics, vol. 38, no. 2, pp. 228–233, 2006.
[28]
H. K. Kim, Y. S. Lee, U. Sivaprasad, A. Malhotra, and A. Dutta, “Muscle-specific microRNA miR-206 promotes muscle differentiation,” Journal of Cell Biology, vol. 174, no. 5, pp. 677–687, 2006.
[29]
E. van Rooij, D. Quiat, B. A. Johnson et al., “A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance,” Developmental Cell, vol. 17, no. 5, pp. 662–673, 2009.
[30]
S. van Leeuwen and H. Mikkers, “Long non-coding RNAs: guardians of development,” Differentiation, vol. 80, no. 4-5, pp. 175–183, 2010.
[31]
G. Caretti, R. L. Schiltz, F. J. Dilworth et al., “The RNA Helicases p68/p72 and the Noncoding RNA SRA Are Coregulators of MyoD and Skeletal Muscle Differentiation,” Developmental Cell, vol. 11, no. 4, pp. 547–560, 2006.
[32]
Z. Zhao, G. Tavoosidana, M. Sj?linder et al., “Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions,” Nature Genetics, vol. 38, no. 11, pp. 1341–1347, 2006.
[33]
E. Lieberman-Aiden, N. L. Van Berkum, L. Williams et al., “Comprehensive mapping of long-range interactions reveals folding principles of the human genome,” Science, vol. 326, no. 5950, pp. 289–293, 2009.
[34]
M. J. Fullwood, M. H. Liu, Y. F. Pan et al., “An oestrogen-receptor-α-bound human chromatin interactome,” Nature, vol. 462, no. 7269, pp. 58–64, 2009.
[35]
G. Li, X. Ruan, R. K. Auerbach et al., “Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation,” Cell, vol. 148, no. 1-2, pp. 84–98, 2012.
[36]
D. E. Schones, K. Cui, S. Cuddapah et al., “Dynamic regulation of nucleosome positioning in the human genome,” Cell, vol. 132, no. 5, pp. 887–898, 2008.
[37]
A. P. Boyle, S. Davis, H. P. Shulha et al., “High-resolution mapping and characterization of open chromatin across the genome,” Cell, vol. 132, no. 2, pp. 311–322, 2008.
[38]
P. G. Giresi and J. D. Lieb, “Isolation of active regulatory elements from eukaryotic chromatin using FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements),” Methods, vol. 48, no. 3, pp. 233–239, 2009.
[39]
A. Barski, S. Cuddapah, K. Cui et al., “High-resolution profiling of histone methylations in the human genome,” Cell, vol. 129, no. 4, pp. 823–837, 2007.
[40]
S. J. Cokus, S. Feng, X. Zhang et al., “Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning,” Nature, vol. 452, no. 7184, pp. 215–219, 2008.
[41]
C. Bock, E. M. Tomazou, A. B. Brinkman et al., “Quantitative comparison of genome-wide DNA methylation mapping technologies,” Nature Biotechnology, vol. 28, no. 10, pp. 1106–1114, 2010.
[42]
A. B. Brinkman, F. Simmer, K. Ma, A. Kaan, J. Zhu, and H. G. Stunnenberg, “Whole-genome DNA methylation profiling using MethylCap-seq,” Methods, vol. 52, no. 3, pp. 232–236, 2010.
[43]
R. D. Hawkins, G. C. Hon, and B. Ren, “Next-generation genomics: an integrative approach,” Nature Reviews Genetics, vol. 11, no. 7, pp. 476–486, 2010.
[44]
Y. Cao, Z. Yao, D. Sarkar et al., “Genome-wide MyoD binding in skeletal muscle cells: a potential for broad cellular reprogramming,” Developmental Cell, vol. 18, no. 4, pp. 662–674, 2010.
[45]
H. Weintraub, R. Davis, S. Tapscott et al., “The myoD gene family: nodal point during specification of the muscle cell lineage,” Science, vol. 251, no. 4995, pp. 761–766, 1991.
[46]
H. Weintraub, S. J. Tapscott, R. L. Davis et al., “Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 14, pp. 5434–5438, 1989.
[47]
P. Asp, R. Blum, V. Vethantham et al., “Genome-wide remodeling of the epigenetic landscape during myogenic differentiation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 22, pp. E149–E158, 2011.
[48]
X. Chen, H. Xu, P. Yuan et al., “Integration of external signaling pathways with the core transcriptional network in embryonic stem cells,” Cell, vol. 133, no. 6, pp. 1106–1117, 2008.
[49]
K. Mousavi, H. Zare, A. H. Wang, and V. Sartorelli, “Polycomb protein Ezh1 promotes RNA polymerase II elongation,” Molecular Cell, vol. 45, no. 2, pp. 255–262, 2012.
[50]
R. Margueron, G. Li, K. Sarma et al., “Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms,” Molecular Cell, vol. 32, no. 4, pp. 503–518, 2008.
[51]
X. Shen, Y. Liu, Y. J. Hsu et al., “EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency,” Molecular Cell, vol. 32, no. 4, pp. 491–502, 2008.
[52]
B. C. Lim, S. Lee, J.-Y. Shin et al., “Genetic diagnosis of duchenne and becker: comprehensive mutational search in a single platform,” Journal of Medical Genetics, vol. 48, no. 11, pp. 731–736, 2011.
[53]
L. N. Geng, Z. Yao, L. Snider, et al., “dux4 activates germline genes, retroelements, and immune mediators: implications for facioscapulohumeral dystrophy,” Developmental Cell, vol. 22, pp. 38–51, 2012.
[54]
H. Gu, C. Bock, T. S. Mikkelsen et al., “Genome-scale DNA methylation mapping of clinical samples at single-nucleotide resolution,” Nature Methods, vol. 7, no. 2, pp. 133–136, 2010.
[55]
N. D. Heintzman, R. K. Stuart, G. Hon et al., “Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome,” Nature Genetics, vol. 39, no. 3, pp. 311–318, 2007.
[56]
S. Cuddapah, R. Jothi, D. E. Schones, T. Y. Roh, K. Cui, and K. Zhao, “Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains,” Genome Research, vol. 19, no. 1, pp. 24–32, 2009.
[57]
C. Chu, K. Qu, F. Zhong, S. Artandi, and H. Chang, “Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions,” Molecular Cell, vol. 44, no. 4, pp. 667–678, 2011.
[58]
P. Shankaranarayanan, M. A. Mendoza-Parra, W. van Gool, L. M. Trindade, and H. Gronemeyer, “Single-tube linear DNA amplification for genome-wide studies using a few thousand cells,” Nature Protocols, vol. 7, pp. 328–338, 2012.
[59]
E. E. Schadt, S. Turner, and A. Kasarskis, “A window into third-generation sequencing,” Human Molecular Genetics, vol. 19, no. 2, pp. R227–240, 2010.
[60]
C. Trapnell, B. A. Williams, G. Pertea et al., “Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation,” Nature Biotechnology, vol. 28, no. 5, pp. 511–515, 2010.
[61]
M. D. Robinson and A. Oshlack, “A scaling normalization method for differential expression analysis of RNA-seq data,” Genome Biology, vol. 11, no. 3, article r25, 2010.