全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Peanut (Arachis hypogaea) Expressed Sequence Tag Project: Progress and Application

DOI: 10.1155/2012/373768

Full-Text   Cite this paper   Add to My Lib

Abstract:

Many plant ESTs have been sequenced as an alternative to whole genome sequences, including peanut because of the genome size and complexity. The US peanut research community had the historic 2004 Atlanta Genomics Workshop and named the EST project as a main priority. As of August 2011, the peanut research community had deposited 252,832 ESTs in the public NCBI EST database, and this resource has been providing the community valuable tools and core foundations for various genome-scale experiments before the whole genome sequencing project. These EST resources have been used for marker development, gene cloning, microarray gene expression and genetic map construction. Certainly, the peanut EST sequence resources have been shown to have a wide range of applications and accomplished its essential role at the time of need. Then the EST project contributes to the second historic event, the Peanut Genome Project 2010 Inaugural Meeting also held in Atlanta where it was decided to sequence the entire peanut genome. After the completion of peanut whole genome sequencing, ESTs or transcriptome will continue to play an important role to fill in knowledge gaps, to identify particular genes and to explore gene function. 1. Introduction Legumes are a diverse and important family of angiosperms. With more than 650 genera and 18,000 species, legumes are the third largest family of higher plants and are second only to grasses in agriculture [1]. Peanut is one of the major economically important legumes and is widely grown in the southern United States, and countries like China, India, and in South and Central America and Africa. On a global basis, peanut is a major source of protein and vegetable oil for human nutrition. China and India together produce almost two-thirds of the world’s peanuts, and the US produces about 6% (http://faostat.fao.org/). Nearly two-thirds of global production is crushed for oil, and the remaining one third is consumed as food. From 2004 to 2006, peanuts were grown on an average of 21.49 million hectares worldwide with production totaling 32.98 million metric tons (http://www.nass.usda.gov/Publications/Ag_Statistics/2008/Chap03.pdf). During the same time, the US peanut averaged 571 thousand hectares with production of 1.9 million metric tons. Peanut production also has a significant role in sustainable agriculture in terms of global food security and nutrition, fuel and energy, sustainable fertilization, and enhanced agricultural productivity as a rotation crop. Peanut offers numerous health benefits, but is also one of the primary food

References

[1]  J. J. Doyle, “Leguminosae,” in Encyclopedia of Genetics, S. Brenner and J. H. Miller, Eds., pp. 1081–1085, Academic Press, San Diego, Calif, USA, 2001.
[2]  B. Z. Guo, C. Y. Chen, Y. Chu, C. C. Holbrook, P. Ozias-Akins, and H. T. Stalker, “Advances in genetics and genomics for sustainable peanut production,” in Sustainable Agriculture and New Biotechnologies, N. Benkeblia, Ed., pp. 341–367, CRC Press, Boca Raton, Fla, USA, 2012.
[3]  R. F. Wilson, H. T. Stalker, and E. C. Brummer, Legume Crop Genomics, AOCS Press, Champaign, Ill, USA, 2004.
[4]  M. D. Adams, J. M. Kelley, J. D. Gocayne et al., “Complementary DNA sequencing: expressed sequence tags and human genome project,” Science, vol. 252, no. 5013, pp. 1651–1656, 1991.
[5]  M. Luo, P. Dang, B. Z. Guo et al., “Generation of expressed sequence tags (ESTS) for gene discovery and marker development in cultivated peanut,” Crop Science, vol. 45, no. 1, pp. 346–353, 2005.
[6]  K. Proite, S. C. M. Leal-Bertioli, D. J. Bertioli et al., “ESTs from a wild Arachis species for gene discovery and marker development,” BMC Plant Biology, vol. 7, article 7, 2007.
[7]  B. Z. Guo, X. P. Chen, P. Dang et al., “Peanut gene expression profiling in developing seeds at different reproduction stages during Aspergillus parasiticus infection,” BMC Developmental Biology, vol. 8, article 12, 2008.
[8]  B. Z. Guo, X. P. Chen, Y. B. Hong et al., “Analysis of gene expression profiles in leaf tissues of cultivated peanuts and development of EST-SSR markers and gene discovery,” International Journal of Plant Genomics, vol. 2009, Article ID 715605, 14 pages, 2009.
[9]  A. Haegeman, J. Jacob, B. Vanholme, T. Kyndt, M. Mitreva, and G. Gheysen, “Expressed sequence tags of the peanut pod nematode Ditylenchus africanus: the first transcriptome analysis of an Anguinid nematode,” Molecular and Biochemical Parasitology, vol. 167, no. 1, pp. 32–40, 2009.
[10]  Y. P. Bi, W. Liu, H. Xia et al., “EST sequencing and gene expression profiling of cultivated peanut (Arachis hypogaea L.),” Genome, vol. 53, no. 10, pp. 832–839, 2010.
[11]  G. Q. Song, M. J. Li, H. Xiao et al., “EST sequencing and SSR marker development from cultivated peanut (Arachis hypogaea L.),” Electronic Journal of Biotechnology, vol. 13, no. 3, pp. 1–9, 2010.
[12]  S. V. Tirumalaraju, M. Jain, and M. Gallo, “Differential gene expression in roots of nematode-resistant and -susceptible peanut (Arachis hypogaea) cultivars in response to early stages of peanut root-knot nematode (Meloidogyne arenaria) parasitization,” Journal of Plant Physiology, vol. 168, no. 5, pp. 481–492, 2011.
[13]  C. C. Holbrook and A. K. Culbreath, “Registration of “Tifrunner” peanut,” Journal of Plant Registrations, vol. 1, article 124, 2007.
[14]  D. M. T. Alves, R. W. Pereira, S. C. M. Leal-Bertioli, M. C. Moretzsohn, P. M. Guimar?es, and D. J. Bertioli, “Development and use of single nucleotide polymorphism markers for candidate resistance genes in wild peanuts (Arachis spp),” Genetics and Molecular Research, vol. 7, no. 3, pp. 631–642, 2008.
[15]  P. Koilkonda, S. Sato, S. Tabata et al., “Large-scale development of expressed sequence tag-derived simple sequence repeat markers and diversity analysis in Arachis spp.,” Molecular Breeding, vol. 30, no. 1, pp. 125–138, 2012.
[16]  Y. S. Yan, X. D. Lin, Y. S. Zhang, L. Wang, K. Wu, and S. Z. Huang, “Isolation of peanut genes encoding arachins and conglutins by expressed sequence tags,” Plant Science, vol. 169, no. 2, pp. 439–445, 2005.
[17]  L. Wang, Y. S. Yan, B. Liao, X. D. Lin, and S. Z. Huang, “The cDNA cloning of conarachin gene and its expression in developing peanut seeds,” Journal of Plant Physiology and Molecular Biology, vol. 31, no. 1, pp. 107–110, 2005.
[18]  X. J. Wang, L. Su, X. Q. Quan, L. Shan, H. T. Zhang, and Y. P. Bi, “Peanut (Arachis hypogaea L.) EST sequencing, gene cloning and Agrobacteria-mediated transformation,” in Proceedings of the International Groundnut Conference on Groundnut Aflatoxin and Genomics, pp. 59–60, Guangzhou, China, November, 2006.
[19]  J. Y. Wang, L. J. Pan, Q. L. Yang, and S. L. Yu, “Development and characterization of EST-SSR makers from NCBI and cDNA library in cultivated peanut (Arachis hypogaea L.),” Molecular Plant Breeding, vol. 7, no. 4, pp. 806–810, 2009.
[20]  J. Y. Wang, L. J. Pan, Q. L. Yang, and S. L. Yu, “Development and characterization of EST-SSR markers from NCBI and cDNA library in cultivated peanut (Arachis hypogaea L.),” Legume Genomics and Genetics, vol. 1, no. 6, pp. 30–33, 2010.
[21]  J. Q. Huang, L. Y. Yan, Y. Lei, H. F. Jiang, and B. S. Liao, “Peanut cDNA library construction and EST sequence analysis,” Chinese Journal of Oil Crop Sciences, vol. 10, pp. 121–125, 2008.
[22]  Y. Xiao, B. S. Liao, L. Y. Yan et al., “Development and utilization of EST-SSR primers in peanut(Arachis hypogaea L.),” Hubei Agricultural Sciences, vol. 49, no. 11, pp. 2625–2628, 2010.
[23]  M. J. Li, H. Xia, C. Z. Zhao et al., “Isolation and characterization of putative Acetyl-CoA carboxylases in Arachis hypogaea L.,” Plant Molecular Biology Reporter, vol. 28, no. 1, pp. 58–68, 2009.
[24]  M. J. Li, A. Q. Li, H. Xia et al., “Cloning and sequence analysis of putative type II fatty acid synthase genes from Arachis hypogaea L.,” Journal of Biosciences, vol. 34, no. 2, pp. 227–238, 2009.
[25]  M. J. Li, X. J. Wang, L. Su, Y. P. Bi, and S. B. Wan, “Characterization of five putative acyl carrier protein (ACP) isoforms from developing seeds of Arachis hypogaea L.,” Plant Molecular Biology Reporter, vol. 28, no. 3, pp. 365–372, 2010.
[26]  R. M. P. Siloto, K. Findlay, A. Lopez-Villalobos, E. C. Yeung, C. L. Nykiforuk, and M. M. Moloney, “The accumulation of oleosins determines the size of seed oilbodies in Arabidopsis,” Plant Cell, vol. 18, no. 8, pp. 1961–1974, 2006.
[27]  X. J. Wang, H. Xia, C. S. Li, C. Z. Zhao, and A. Q. Li, Peanut Allergens: Gene Cloning and RNAi Interference. Sino-Dutch Symposium on Multedisciplinary Allergy Research, Hangzhou, China.
[28]  L. Su, C. Z. Zhao, Y. P. Bi, S. B. Wan, H. Xia, and X. J. Wang, “Cloning and expression analysis of peanut LEA protein genes,” Journal of Biosciences, vol. 36, no. 2, pp. 223–228, 2011.
[29]  F. X. Shao, Z. J. Liu, L. Q. Wei, M. Cao, and Y. P. Bi, “Cloning and sequence analysis of a novel NAC-like gene AhNAC1 in Peanut (Arachis hypogaea),” Acta Botanica Boreali-Occidentalia Sinica, vol. 10, pp. 1929–1934, 2008.
[30]  M. Zhang, W. Liu, Y. P. Bi, and Z. Z. Wang, “Isolation and identification of PNDREB1: a new DREB transcription factor from peanut (Arachis hypogaea L.),” Acta Agronomica Sinica, vol. 35, no. 11, pp. 1973–1980, 2009.
[31]  G. L. Zhang, X. G. Shi, N. B. Cai, Y. L. Zhao, and W. J. Zhuang, “Molecular cloning and expression of pericarp and testaspecific expression gene AhPSG13,” Chinese Journal of Oil Crop Sciences, vol. 32, no. 1, pp. 035–040, 2010.
[32]  W. F. Li, H. Y. Liu, N. Zhong, and X. Q. Liang, “Cloning and prokaryotic expression of defensin gene from peanut (Arachis hypogaea L.),” Genomics and Applied Biology, vol. 28, no. 4, pp. 645–650, 2009.
[33]  C. Z. Xie, X. Q. Liang, L. Li, and H. Y. Liu, “Cloning and prokaryotic expression of AhPR10 gene with resistance to aspergillus flavus in peanut,” Genomics and Applied Biology, vol. 28, no. 2, pp. 237–244, 2009.
[34]  C. Z. Zhao, A. Q. Li, X. J. Wang, H. Xia, L. Su, and C. S. Li, “Cloning and expression analysis of lipid transfer protein family genes in Arachis hypogaea L.,” Journal of Peanut Science, vol. 38, no. 4, pp. 15–20, 2009.
[35]  M. Luo, P. Dang, M. G. Bausher et al., “Identification of transcripts involved in resistance responses to leaf spot disease caused by Cercosporidium personatum in peanut (Arachis hypogaea),” Phytopathology, vol. 95, no. 4, pp. 381–387, 2005.
[36]  M. Luo, X. Liang, P. Dang et al., “Microarray-based screening of differentially expressed genes in peanut in response to Aspergillus parasiticus infection and drought stress,” Plant Science, vol. 169, no. 4, pp. 695–703, 2005.
[37]  P. Payton, K. R. Kottapalli, D. Rowland et al., “Gene expression profiling in peanut using high density oligonucleotide microarrays,” BMC Genomics, vol. 10, article 265, 2009.
[38]  B. Z. Guo, N. D. Fedorova, X. P. Chen et al., “Gene expression profiling and identification of resistance genes to Aspergillus flavus infection in peanut through EST and microarray strategies,” Toxins, vol. 3, no. 7, pp. 737–753, 2011.
[39]  W. J. Zhuang, H. Chen, P. K. Nancy et al., “Isolation and characterization of important genes toward improvement peanut resistance to Aspergillus flavus,” in Proceedings of the 5th International Conference of the Peanut Research Community on Advances in Arachis Through Genomics and Biotechnology, p. 28, Brasillia, Brazil, June, 2011.
[40]  X. Q. Liang, X. P. Chen, Y. B. Hong et al., “Utility of EST-derived SSR in cultivated peanut (Arachis hypogaea L.) and Arachis wild species,” BMC Plant Biology, vol. 9, article 35, 2009.
[41]  H. Qin, S. Feng, C. Chen et al., “An Integrated genetic linkage map of cultivated peanut (Arachis hypogaea L.) constructed from two RIL populations,” Theoretical and Applied Genetics, vol. 124, pp. 653–664, 2012.
[42]  X. Q. Liang, Y. B. Hong, X. P. Chen et al., “Characterization and application of EST-SSRs in peanut (Arachis hypogaea L.),” Acta Agronomica Sinica, vol. 35, no. 2, pp. 246–254, 2009.
[43]  T. Thiel, W. Michalek, R. K. Varshney, and A. Graner, “Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.),” Theoretical and Applied Genetics, vol. 106, no. 3, pp. 411–422, 2003.
[44]  C. Liewlaksaneeyanawin, C. E. Ritland, Y. A. El-Kassaby, and K. Ritland, “Single-copy, species-transferable microsatellite markers developed from loblolly pine ESTs,” Theoretical and Applied Genetics, vol. 109, no. 2, pp. 361–369, 2004.
[45]  R. K. Varshney, R. Sigmund, A. B?rner et al., “Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice,” Plant Science, vol. 168, no. 1, pp. 195–202, 2005.
[46]  S. P. Feng, W. G. Li, H. S. Huang, J. Y. Wang, and Y. T. Wu, “Development, characterization and cross-species/genera transferability of EST-SSR markers for rubber tree (Hevea brasiliensis),” Molecular Breeding, vol. 23, no. 1, pp. 85–97, 2009.
[47]  B. S. Bushman, S. R. Larson, M. Tuna et al., “Orchardgrass (Dactylis glomerata L.) EST and SSR marker development, annotation, and transferability,” Theoretical and Applied Genetics, vol. 123, no. 1, pp. 119–129, 2011.
[48]  S. Choudhary, N. K. Sethy, B. Shokeen, and S. Bhatia, “Development of chickpea EST-SSR markers and analysis of allelic variation across related species,” Theoretical and Applied Genetics, vol. 118, no. 3, pp. 591–608, 2009.
[49]  R. Koppolu, H. D. Upadhyaya, S. L. Dwivedi, D. A. Hoisington, and R. K. Varshney, “Genetic relationships among seven sections of genus Arachis studied by using SSR markers,” BMC Plant Biology, vol. 10, article 15, 2010.
[50]  E. S. Mace, R. K. Varshney, V. Mahalakshmi et al., “In silico development of simple sequence repeat markers within the aeschynomenoid/dalbergoid and genistoid clades of the Leguminosae family and their transferability to Arachis hypogaea, groundnut,” Plant Science, vol. 174, no. 1, pp. 51–60, 2008.
[51]  R. K. Varshney, D. J. Bertioli, M. C. Moretzsohn et al., “The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.),” Theoretical and Applied Genetics, vol. 118, no. 4, pp. 729–739, 2009.
[52]  M. C. Moretzsohn, L. Leoi, K. Proite et al., “A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae),” Theoretical and Applied Genetics, vol. 111, no. 6, pp. 1060–1071, 2005.
[53]  M. C. Moretzsohn, A. V. G. Barbosa, D. M. T. Alves-Freitas et al., “A linkage map for the B-genome of Arachis (Fabaceae) and its synteny to the A-genome,” BMC Plant Biology, vol. 9, article 40, 2009.
[54]  D. Foncéka, T. Hodo-Abalo, R. Rivallan et al., “Genetic mapping of wild introgressions into cultivated peanut: a way toward enlarging the genetic basis of a recent allotetraploid,” BMC Plant Biology, vol. 9, article 103, 2009.
[55]  S. C. M. Leal-Bertioli, A. C. V. F. José, D. M. T. Alves-Freitas et al., “Identification of candidate genome regions controlling disease resistance in Arachis,” BMC Plant Biology, vol. 9, article 112, 2009.
[56]  K. Ravi, V. Vadez, S. Isobe et al., “Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.),” Theoretical and Applied Genetics, vol. 122, no. 6, pp. 1119–1132, 2011.
[57]  Y. B. Hong, X. P. Chen, X. Q. Liang et al., “A SSR-based composite genetic linkage map for the cultivated peanut (Arachis hypogaea L.) genome,” BMC Plant Biology, vol. 10, article 17, 2010.
[58]  S. Mondal, A. M. Badigannavar, and S. F. D’Souza, “Molecular tagging of a rust resistance gene in cultivated groundnut (Arachis hypogaea L.) introgressed from Arachis cardenasii,” Molecular Breeding, vol. 29, no. 2, pp. 467–476, 2012.
[59]  D. A. Knauft and D. W. Gorbet, “SunOleic 97R,” Florida Agricultural Experiment Stations Circular, vol. 400, pp. 1–7, 1997.
[60]  D. W. Gorbet and D. A. Knauft, “Registration of “SunOleic 95R” peanut,” Crop Science, vol. 4, article 1932, 1997.
[61]  A. J. Norden, D. W. Gorbet, and D. A. Knauft, “Registration of “Sunrunner” peanut,” Crop Science, vol. 25, article 1126, 1985.
[62]  A. K. Culbreath, D. W. Gorbet, N. Martinez-Ochoa et al., “High levels of field resistance to tomato spotted wilt virus in peanut breeding lines derived from hypogaea and hirsuta botanical varieties,” Peanut Science, vol. 32, pp. 20–24, 2005.
[63]  Y. Chu, L. Ramos, C. C. Holbrook, and P. Ozias-Akins, “Frequency of a loss-of-function mutation in oleoyl-PC desaturase (ahFAD2A) in the mini-core of the U.S. peanut germplasm collection,” Crop Science, vol. 47, no. 6, pp. 2372–2378, 2007.
[64]  Y. Chu, C. C. Holbrook, and P. Ozias-Akins, “Two alleles of ahFAD2B control the high oleic acid trait in cultivated peanut,” Crop Science, vol. 49, no. 6, pp. 2029–2036, 2009.
[65]  G. Kochert, T. Halward, W. D. Branch, and C. E. Simpson, “RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species,” Theoretical and Applied Genetics, vol. 81, no. 5, pp. 565–570, 1991.
[66]  G. He and C. Prakash, “Evaluation of genetic relationships among botanical varieties of cultivated peanut (Arachis hypogaea L.) using AFLP markers,” Genetic Resources and Crop Evolution, vol. 48, no. 4, pp. 347–352, 2001.
[67]  T. Halward, H. T. Stalker, and G. Kochert, “Development of an RFLP linkage map in diploid peanut species,” Theoretical and Applied Genetics, vol. 87, no. 3, pp. 379–384, 1993.
[68]  M. D. Burow, C. E. Simpson, J. L. Starr, and A. H. Paterson, “Transmission genetics of chromatin from a synthetic amphidiploid to cultivated peanut (Arachis hypogaea L.): broadening the gene pool of a monophyletic polyploid species,” Genetics, vol. 159, no. 2, pp. 823–837, 2001.
[69]  H. T. Stalker and J. P. Moss, “Speciation, Cytogenetics, and Utilization of Arachis Species,” Advances in Agronomy, vol. 41, no. C, pp. 1–40, 1987.
[70]  G. Kochert, H. T. Stalker, M. Gimenes, L. Galgaro, C. R. Lopes, and K. Moore, “RFLP and cytogenetic evidence on the origin and evolution of allotetraploid domesticated peanut, Arachis hypogaea (Leguminosae),” American Journal of Botany, vol. 83, no. 10, pp. 1282–1291, 1996.
[71]  N. D. Young, N. F. Weeden, and G. Kochert, “Genome mapping in legumes (Fam. Fabaceae),” in Genome Mapping in Plants, A. H. Paterson, Ed., pp. 211–227, Landes Bioscience Press, Austin, Tex, USA, 1996.
[72]  S. A. Goff, D. Ricke, T. H. Lan et al., “A draft sequence of the rice genome (Oryza sativa L. ssp. japonica),” Science, vol. 296, no. 5565, pp. 92–100, 2002.
[73]  J. Yu, S. Hu, J. Wang, G. K. Wong, S. Li, B. Liu, et al., “A draft sequence of the rice genome (Oryza sativa L. ssp. indica),” Science, vol. 296, no. 5565, pp. 79–92, 2002.
[74]  A. G. Tian, J. Wang, P. Cui et al., “Characterization of soybean genomic features by analysis of its expressed sequence tags,” Theoretical and Applied Genetics, vol. 108, no. 5, pp. 903–913, 2004.
[75]  M. Thudi, Y. Li, S. A. Jackson, G. D. May, and R. K. Varshney, “Current state-of-art of sequencing technologies for plant genomics research,” Briefings in Functional Genomics, vol. 11, pp. 3–11, 2012.
[76]  L. D. Hillier, G. Lennon, M. Becker et al., “Generation and analysis of 280,000 human expressed sequence tags,” Genome Research, vol. 6, no. 9, pp. 807–828, 1996.
[77]  M. Seki, M. Narusaka, A. Kamiya et al., “Functional annotation of a full-length Arabidopsis cDNA collection,” Science, vol. 296, no. 5565, pp. 141–145, 2002.
[78]  M. R. Brent, “Steady progress and recent breakthroughs in the accuracy of automated genome annotation,” Nature Reviews Genetics, vol. 9, no. 1, pp. 62–73, 2008.
[79]  C. Z. Zhao, X. J. Wang, A. Q. Li, and C. S. Li, “De novo characterization of peanut transcriptome during gynophore development,” in Proceedings of the 5th International Conference of the Peanut Research Community on Advances in Arachis Through Genomics and Biotechnology, p. 48, Brasillia, Brazil, June, 2011.
[80]  S. J. Emrich, W. B. Barbazuk, L. Li, and P. S. Schnable, “Gene discovery and annotation using LCM-454 transcriptome sequencing,” Genome Research, vol. 17, no. 1, pp. 69–73, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133