B cell development is a multistep process that is tightly regulated at the transcriptional level. In recent years, investigators have shed light on the transcription factor networks involved in all the differentiation steps comprising B lymphopoiesis. The interplay between transcription factors and the epigenetic machinery involved in establishing the correct genomic landscape characteristic of each cellular state is beginning to be dissected. The participation of “epigenetic regulator-transcription factor” complexes is also crucial for directing cells during reprogramming into pluripotency or lineage conversion. In this context, greater knowledge of epigenetic regulation during B cell development, transdifferentiation, and reprogramming will enable us to understand better how epigenetics can control cell lineage commitment and identity. Herein, we review the current knowledge about the epigenetic events that contribute to B cell development and reprogramming. 1. Introduction Hematopoietic stem cells (HSCs) give rise to mature B cells through the sequential differentiation of lymphoid progenitor cells. Long-term HSCs (LT-HSCs) have the ability to self-renew and reconstitute the entire immune system by differentiating into short-term HSCs (ST-HSCs). ST-HSCs differentiate into multipotent progenitors (MPPs) that then branch into common myeloid progenitors (CMPs) and lymphoid-primed multipotent progenitors (LMPPs). CMPs further differentiate into erythrocytes and megakaryocytes, whereas LMPPs retain the capability to give rise to myelomonocytic or lymphoid lineages [1, 2]. LMPPs become common lymphoid progenitors (CLPs) [3], which have the potential to differentiate into B and T lymphocytes as well as natural killer (NK) cells [4, 5]. Once committed to the lymphoid lineage, further differentiation steps lead to the formation of pro-B and pre-B cells, which are the early B cell precursors for immature B cells, the terminally differentiated plasma cells and germinal-center B cells (Figure 1). Figure 1: Scheme for B cell development. Successive stages of B cell differentiation and the key transcription factors and epigenetic regulators involved are shown. The epigenetic regulators that cooperate with specific transcription factors at every cell differentiation step are in purple. MicroRNA transcript targets are in green. Every step in B cell development is characterized by the activation of the specific genetic program characteristic of the new intermediate/progenitor generated and the repression/extinction of the genetic program of the previous cellular
References
[1]
J. Adolfsson, R. M?nsson, N. Buza-Vidas et al., “Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential: a revised road map for adult blood lineage commitment,” Cell, vol. 121, no. 2, pp. 295–306, 2005.
[2]
T. Yoshida, S. Yao-Ming Ng, J. C. Zuniga-Pflucker, and K. Georgopoulos, “Early hematopoietic lineage restrictions directed by Ikaros,” Nature Immunology, vol. 7, no. 4, pp. 382–391, 2006.
[3]
H. Igarashi, S. C. Gregory, T. Yokota, N. Sakaguchi, and P. W. Kincade, “Transcription from the RAG1 locus marks the earliest lymphocyte progenitors in bone marrow,” Immunity, vol. 17, no. 2, pp. 117–130, 2002.
[4]
M. Kondo, I. L. Weissman, and K. Akashi, “Identification of clonogenic common lymphoid progenitors in mouse bone marrow,” Cell, vol. 91, no. 5, pp. 661–672, 1997.
[5]
C. Cobaleda and M. Busslinger, “Developmental plasticity of lymphocytes,” Current Opinion in Immunology, vol. 20, no. 2, pp. 139–148, 2008.
[6]
G. Natoli, “Maintaining cell identity through global control of genomic organization,” Immunity, vol. 33, no. 1, pp. 12–24, 2010.
[7]
G. Bain, E. C. R. Maandag, D. J. Izon et al., “E2A proteins are required for proper b cell development and initiation of immunoglobulin gene rearrangements,” Cell, vol. 79, no. 5, pp. 885–892, 1994.
[8]
G. Bain, E. C. Robanus Maandag, H. P. J. Te Riele et al., “Both E12 and E47 allow commitment to the B cell lineage,” Immunity, vol. 6, no. 2, pp. 145–154, 1997.
[9]
Y. Zhuang, P. Soriano, and H. Weintraub, “The helix-loop-helix gene E2A is required for B cell formation,” Cell, vol. 79, no. 5, pp. 875–884, 1994.
[10]
H. Lin and R. Grosschedl, “Failure of B-cell differentiation in mice lacking the transcription factor EBF,” Nature, vol. 376, no. 6537, pp. 263–267, 1995.
[11]
H. S. Dengler, G. V. Baracho, S. A. Omori et al., “Distinct functions for the transcription factor Foxo1 at various stages of B cell differentiation,” Nature Immunology, vol. 9, no. 12, pp. 1388–1398, 2008.
[12]
P. Urbanek, Z. Q. Wang, I. Fetka, E. F. Wagner, and M. Busslinger, “Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking Pax5/BSAP,” Cell, vol. 79, no. 5, pp. 901–912, 1994.
[13]
D. Allman, A. Jain, A. Dent et al., “BCL-6 expression during B-cell activation,” Blood, vol. 87, no. 12, pp. 5257–5268, 1996.
[14]
A. L. Dent, A. L. Shaffer, X. Yu, D. Allman, and L. M. Staudt, “Control of inflammation, cytokine expression, and germinal center formation by BCL-6,” Science, vol. 276, no. 5312, pp. 589–592, 1997.
[15]
B. H. Ye, G. Cattoretti, Q. Shen et al., “The BCL-6 proto-oncogene controls germinal-centre formation and Th2- type inflammation,” Nature Genetics, vol. 16, no. 2, pp. 161–170, 1997.
[16]
A. L. Shaffer, K. I. Lin, T. C. Kuo et al., “Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature B cell gene expression program,” Immunity, vol. 17, no. 1, pp. 51–62, 2002.
[17]
R. Sciammas and M. M. Davis, “Modular nature of blimp-1 in the regulation of gene expression during B cell maturation,” Journal of Immunology, vol. 172, no. 9, pp. 5427–5440, 2004.
[18]
Y. C. Lin, S. Jhunjhunwala, C. Benner et al., “A global network of transcription factors, involving E2A, EBF1 and Foxo1, that orchestrates B cell fate,” Nature Immunology, vol. 11, no. 7, pp. 635–643, 2010.
[19]
S. McManus, A. Ebert, G. Salvagiotto et al., “The transcription factor Pax5 regulates its target genes by recruiting chromatin-modifying proteins in committed B cells,” EMBO Journal, vol. 30, no. 12, pp. 2388–2404, 2011.
[20]
N. Novershtern, A. Subramanian, L. N. Lawton et al., “Densely interconnected transcriptional circuits control cell states in human hematopoiesis,” Cell, vol. 144, no. 2, pp. 296–309, 2011.
[21]
H. Gao, K. Lukin, J. Ramírez, S. Fields, D. Lopez, and J. Hagman, “Opposing effects of SWI/SNF and Mi-2/NuRD chromatin remodeling complexes on epigenetic reprogramming by EBF and Pax5,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 27, pp. 11258–11263, 2009.
[22]
K. Walter, C. Bonifer, and H. Tagoh, “Stem cell-specific epigenetic priming and B cell-specific transcriptional activation at the mouse Cd19 locus,” Blood, vol. 112, no. 5, pp. 1673–1682, 2008.
[23]
I. H. Su and A. Tarakhovsky, “Epigenetic control of B cell differentiation,” Seminars in Immunology, vol. 17, no. 2, pp. 167–172, 2005.
[24]
H. Kulessa, J. Frampton, and T. Graf, “GATA-1 reprograms avian myelomonocytic cell lines into eosinophils, thromboblasts, and erythroblasts,” Genes and Development, vol. 9, no. 10, pp. 1250–1262, 1995.
[25]
L. H. Bussmann, A. Schubert, T. P. Vu Manh et al., “A robust and highly efficient immune cell reprogramming system,” Cell Stem Cell, vol. 5, no. 5, pp. 554–566, 2009.
[26]
S. L. Nutt, B. Heavey, A. G. Rolink, and M. Busslinger, “Commitment to the B-lymphoid lineage depends on the transcription factor Pax5,” Nature, vol. 401, no. 6753, pp. 556–562, 1999.
[27]
J. Hanna, S. Markoulaki, P. Schorderet et al., “Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency,” Cell, vol. 133, no. 2, pp. 250–264, 2008.
[28]
C. R. Clapier and B. R. Cairns, “The biology of chromatin remodeling complexes,” Annual Review of Biochemistry, vol. 78, pp. 273–304, 2009.
[29]
S. Guil and M. Esteller, “DNA methylomes, histone codes and miRNAs: tying it all together,” International Journal of Biochemistry and Cell Biology, vol. 41, no. 1, pp. 87–95, 2009.
[30]
T. Kouzarides, “Chromatin modifications and their function,” Cell, vol. 128, no. 4, pp. 693–705, 2007.
[31]
J. K. Wiencke, S. Zheng, Z. Morrison, and R. F. Yeh, “Differentially expressed genes are marked by histone 3 lysine 9 trimethylation in human cancer cells,” Oncogene, vol. 27, no. 17, pp. 2412–2421, 2008.
[32]
C. R. Vakoc, S. A. Mandat, B. A. Olenchock, and G. A. Blobel, “Histone H3 lysine 9 methylation and HP1γ are associated with transcription elongation through mammalian chromatin,” Molecular Cell, vol. 19, no. 3, pp. 381–391, 2005.
[33]
K. Georgopoulos, M. Bigby, J. H. Wang et al., “The Ikaros gene is required for the development of all lymphoid lineages,” Cell, vol. 79, no. 1, pp. 143–156, 1994.
[34]
J. H. Wang, A. Nichogiannopoulou, L. Wu et al., “Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation,” Immunity, vol. 5, no. 6, pp. 537–549, 1996.
[35]
S. Y. M. Ng, T. Yoshida, and K. Georgopoulos, “Ikaros and chromatin regulation in early hematopoiesis,” Current Opinion in Immunology, vol. 19, no. 2, pp. 116–122, 2007.
[36]
J. Kim, S. Sif, B. Jones et al., “Ikaros DNA-binding proteins direct formation of chromatin remodeling complexes in lymphocytes,” Immunity, vol. 10, no. 3, pp. 345–355, 1999.
[37]
J. Zhang, A. F. Jackson, T. Naito et al., “Harnessing of the nucleosome-remodeling-deacetylase complex controls lymphocyte development and prevents leukemogenesis,” Nature Immunology, vol. 13, no. 1, pp. 86–94, 2012.
[38]
S. R. McKercher, B. E. Torbett, K. L. Anderson et al., “Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities,” EMBO Journal, vol. 15, no. 20, pp. 5647–5658, 1996.
[39]
E. W. Scott, M. C. Simon, J. Anastasi, and H. Singh, “Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages,” Science, vol. 265, no. 5178, pp. 1573–1577, 1994.
[40]
S. Heinz, C. Benner, N. Spann et al., “Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities,” Molecular Cell, vol. 38, no. 4, pp. 576–589, 2010.
[41]
M. Ye and T. Graf, “Early decisions in lymphoid development,” Current Opinion in Immunology, vol. 19, no. 2, pp. 123–128, 2007.
[42]
M. Busslinger, “Transcriptional control of early B cell development,” Annual Review of Immunology, vol. 22, pp. 55–79, 2004.
[43]
A. S. Lazorchak, J. Wojciechowski, M. Dai, and Y. Zhuang, “E2A promotes the survival of precursor and mature B lymphocytes,” Journal of Immunology, vol. 177, no. 4, pp. 2495–2504, 2006.
[44]
R. H. Amin and M. S. Schlissel, “Foxo1 directly regulates the transcription of recombination-activating genes during B cell development,” Nature Immunology, vol. 9, no. 6, pp. 613–622, 2008.
[45]
H. Maier, R. Ostraat, H. Gao et al., “Early B cell factor cooperates with Runx1 and mediates epigenetic changes associated with mb-1 transcription,” Nature Immunology, vol. 5, no. 10, pp. 1069–1077, 2004.
[46]
E. Mercer, Y. Lin, C. Benner et al., “Multilineage priming of enhancer repertoires precedes commitment to the B and myeloid cell lineages in hematopoietic progenitors,” Immunity, vol. 35, no. 3, pp. 413–425, 2011.
[47]
T. Treiber, E. M. Mandel, S. Pott et al., “Early B cell factor 1 regulates B cell gene networks by activation, repression, and transcription- independent poising of chromatin,” Immunity, vol. 32, no. 5, pp. 714–725, 2010.
[48]
X.-X. Jiang, Q. Nguyen, Y. Chou et al., “Control of B cell development by the histone H2A deubiquitinase MYSM1,” Immunity, vol. 35, no. 6, pp. 883–896, 2011.
[49]
D. O'Carroll, I. Mecklenbrauker, P. P. Das et al., “A Slicer-independent role for Argonaute 2 in hematopoiesis and the microRNA pathway,” Genes and Development, vol. 21, no. 16, pp. 1999–2004, 2007.
[50]
S. B. Koralov, S. A. Muljo, G. R. Galler et al., “Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage,” Cell, vol. 132, no. 5, pp. 860–874, 2008.
[51]
C. Z. Chen, L. Li, H. F. Lodish, and D. P. Bartel, “MicroRNAs modulate hematopoietic lineage differentiation,” Science, vol. 303, no. 5654, pp. 83–86, 2004.
[52]
B. Zhou, S. Wang, C. Mayr, D. P. Bartel, and H. F. Lodish, “miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 17, pp. 7080–7085, 2007.
[53]
C. Xiao, D. P. Calado, G. Galler et al., “MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb,” Cell, vol. 131, no. 1, pp. 146–159, 2007.
[54]
A. Ventura, A. G. Young, M. M. Winslow et al., “Targeted deletion reveals essential and overlapping functions of the miR-17~92 family of miRNA clusters,” Cell, vol. 132, no. 5, pp. 875–886, 2008.
[55]
R. M. O'Connell, D. S. Rao, A. A. Chaudhuri, and D. Baltimore, “Physiological and pathological roles for microRNAs in the immune system,” Nature Reviews Immunology, vol. 10, no. 2, pp. 111–122, 2010.
[56]
S. Kuchen, W. Resch, A. Yamane et al., “Regulation of MicroRNA expression and abundance during lymphopoiesis,” Immunity, vol. 32, no. 6, pp. 828–839, 2010.
[57]
C. Cobaleda, A. Schebesta, A. Delogu, and M. Busslinger, “Pax5: the guardian of B cell identity and function,” Nature Immunology, vol. 8, no. 5, pp. 463–470, 2007.
[58]
T. Decker, M. Pasca di Magliano, S. McManus et al., “Stepwise activation of enhancer and promoter regions of the B cell commitment gene Pax5 in early lymphopoiesis,” Immunity, vol. 30, no. 4, pp. 508–520, 2009.
[59]
A. Delogu, A. Schebesta, Q. Sun, K. Aschenbrenner, T. Perlot, and M. Busslinger, “Gene repression by Pax5 in B cells is essential for blood cell homeostasis and is reversed in plasma cells,” Immunity, vol. 24, no. 3, pp. 269–281, 2006.
[60]
A. Schebesta, S. McManus, G. Salvagiotto, A. Delogu, G. A. Busslinger, and M. Busslinger, “Transcription factor Pax5 activates the chromatin of key genes involved in B cell signaling, adhesion, migration, and immune function,” Immunity, vol. 27, no. 1, pp. 49–63, 2007.
[61]
C. Pridans, M. L. Holmes, M. Polli et al., “Identification of Pax5 target genes in early B cell differentiation,” Journal of Immunology, vol. 180, no. 3, pp. 1719–1728, 2008.
[62]
H. Tagoh, A. Schebesta, P. Lefevre et al., “Epigenetic silencing of the c-fms locus during B-lymphopoiesis occurs in discrete steps and is reversible,” EMBO Journal, vol. 23, no. 21, pp. 4275–4285, 2004.
[63]
H. Tagoh, R. Ingram, N. Wilson et al., “The mechanism of repression of the myeloid-specific c-fms gene by Pax5 during B lineage restriction,” EMBO Journal, vol. 25, no. 5, pp. 1070–1080, 2006.
[64]
V. Giambra, S. Volpi, A. V. Emelyanov et al., “Pax5 and linker histone H1 coordinate DNA methylation and histone modifications in the 3′ regulatory region of the immunoglobulin heavy chain locus,” Molecular and Cellular Biology, vol. 28, no. 19, pp. 6123–6133, 2008.
[65]
K. Rajewsky, “Clonal selection and learning in the antibody system,” Nature, vol. 381, no. 6585, pp. 751–758, 1996.
[66]
M. Kraus, M. B. Alimzhanov, N. Rajewsky, and K. Rajewsky, “Survival of resting mature B lymphocytes depends on BCR signaling via the Igα/β heterodimer,” Cell, vol. 117, no. 6, pp. 787–800, 2004.
[67]
K. L. Calame, K. I. Lin, and C. Tunyaplin, “Regulatory mechanisms that determine the development and function of plasma cells,” Annual Review of Immunology, vol. 21, pp. 205–230, 2003.
[68]
T. Honjo, M. Muramatsu, and S. Fagarasan, “Aid: how does it aid antibody diversity?” Immunity, vol. 20, no. 6, pp. 659–668, 2004.
[69]
R. Reljic, S. D. Wagner, L. J. Peakman, and D. T. Fearon, “Suppression of signal transducer and activator of transcription 3-dependent B lymphocyte terminal differentiation by BCL-6,” Journal of Experimental Medicine, vol. 192, no. 12, pp. 1841–1847, 2000.
[70]
A. L. Shaffer, X. Yu, Y. He, J. Boldrick, E. P. Chan, and L. M. Staudt, “BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control,” Immunity, vol. 13, no. 2, pp. 199–212, 2000.
[71]
N. Fujita, D. L. Jaye, M. Kajita, C. Geigerman, C. S. Moreno, and P. A. Wade, “MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer,” Cell, vol. 113, no. 2, pp. 207–219, 2003.
[72]
N. Fujita, D. L. Jaye, C. Geigerman et al., “MTA3 and the Mi-2/NuRD complex regulate cell fate during B lymphocyte differentiation,” Cell, vol. 119, no. 1, pp. 75–86, 2004.
[73]
I. Gyory, J. Wu, G. Fejér, E. Seto, and K. L. Wright, “PRDI-BF1 recruits the histone H3 methyltransferase G9a in transcriptional silencing,” Nature Immunology, vol. 5, no. 3, pp. 299–308, 2004.
[74]
K. Ancelin, U. C. Lange, P. Hajkova et al., “Blimp1 associates with Prmt5 and directs histone arginine methylation in mouse germ cells,” Nature Cell Biology, vol. 8, no. 6, pp. 623–630, 2006.
[75]
S. T. Su, H. Y. Ying, Y. K. Chiu, F. R. Lin, M. Y. Chen, and K. I. Lin, “Involvement of histone demethylase LSD1 in blimp-1-mediated gene repression during plasma cell differentiation,” Molecular and Cellular Biology, vol. 29, no. 6, pp. 1421–1431, 2009.
[76]
A. Muto, K. Ochiai, Y. Kimura et al., “Bach2 represses plasma cell gene regulatory network in B cells to promote antibody class switch,” EMBO Journal, vol. 29, no. 23, pp. 4048–4061, 2010.
[77]
S. L. Nutt, N. Taubenheim, J. Hasbold, L. M. Corcoran, and P. D. Hodgkin, “The genetic network controlling plasma cell differentiation,” Seminars in Immunology, vol. 23, no. 5, pp. 341–349, 2011.
[78]
D. Allman and S. Pillai, “Peripheral B cell subsets,” Current Opinion in Immunology, vol. 20, no. 2, pp. 149–157, 2008.
[79]
L. Belver, V. G. de Yébenes, and A. R. Ramiro, “MicroRNAs prevent the generation of autoreactive antibodies,” Immunity, vol. 33, no. 5, pp. 713–722, 2010.
[80]
H. Xie, M. Ye, R. Feng, and T. Graf, “Stepwise reprogramming of B cells into macrophages,” Cell, vol. 117, no. 5, pp. 663–676, 2004.
[81]
A. Di Tullio, T. P. Vu Manh, A. Schubert, R. M?nsson, and T. Graf, “CCAAT/enhancer binding protein α (C/EBPα)-induced transdifferentiation of pre-B cells into macrophages involves no overt retrodifferentiation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 41, pp. 17016–17021, 2011.
[82]
J. Rodríguez-Ubreva, L. Ciudad, D. Gómez-Cabrero et al., “Pre-B cell to macrophage transdifferentiation without significant promoter DNA methylation changes,” Nucleic Acids Research, vol. 40, no. 5, pp. 1954–1968, 2012.
[83]
C. F. Pereira, R. Terranova, N. K. Ryan et al., “Heterokaryon-based reprogramming of human B lymphocytes for pluripotency requires Oct4 but not Sox2,” PLoS Genetics, vol. 4, no. 9, Article ID e1000170, 2008.
[84]
C. F. Pereira, F. M. Piccolo, T. Tsubouchi et al., “ESCs require PRC2 to direct the successful reprogramming of differentiated cells toward pluripotency,” Cell Stem Cell, vol. 6, no. 6, pp. 547–556, 2010.