全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Dominant Height Model for Site Classification of Eucalyptus grandis Incorporating Climatic Variables

DOI: 10.1155/2013/139236

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study tested the effects of inserting climatic variables in Eucalyptus grandis as covariables of a dominant height model, which for site index classification is usually related to age alone. Dominant height values ranging from 1 to 12 years of age located in the Southeast region of Brazil were used, as well as data from 19 automatic meteorological stations from the area. The Chapman-Richards model was chosen to represent dominant height as a function of age. To include the environmental variables a modifier was included in the asymptote of the model. The asymptote was chosen since this parameter is responsible for the maximum value which the dominant height can reach. Of the four environmental variables most responsible for database variation, the two with the highest correlation to the mean annual increment in dominant height (mean monthly precipitation and temperature) were selected to compose the asymptote modifier. Model validation showed a gain in precision of 33% (reduction of the standard error of estimate) when climatic variables were inserted in the model. Possible applications of the method include the estimation of site capacity in regions lacking any planting history, as well as updating forest inventory data based on past climate regimes. 1. Introduction In its wider scope, forest management involves the choices of strategies that ensure the sustainability of the enterprise as a whole. The optimum management regime, under certain conditions of demand, productivity, distances, and silvicultural and harvests costs, is the higher objective procured. Thus, the choice of the ideal management practice for each forest site greatly contributes to the success of the activity. According to Louw and Scholes [1], the classification of forest site productivity requires the knowledge of the geology, topography, climate, soils, and biotic factors that occur in the local. These authors sustain that the classification of forest sites should have ecological bases and not aligned specifically with productivity (even if a covariance occurs). Although the use of site factors that influence forest growth (e.g., soil characteristics, climatic conditions) for the classification of site quality is reliable to differentiate broad regions of growth, in forestry the use of more direct stand characteristics (e.g., volume, height) is more common due to practical reasons. The use of height growth for assessing site quality in forest stands seems to have been first proposed by Remy de Perthuis de Laillevault, in the second half of the 18th century, working with

References

[1]  J. H. Louw and M. Scholes, “Forest site classification and evaluation: a South African perspective,” Forest Ecology and Management, vol. 171, no. 1-2, pp. 153–168, 2002.
[2]  A. Batho and O. Garcia, “De Perthuis and the origins of site index: a historical note,” Forest Biometry, Modelling and Information Sciences, vol. 1, pp. 1–10, 2006.
[3]  J. P. Skovsgaard and J. K. Vanclay, “Forest site productivity: a review of the evolution of dendrometric concepts for even-aged stands,” Forestry, vol. 81, no. 1, pp. 13–31, 2008.
[4]  I. S. Alemdag, “National site-index and height-growth curves for white spruce growing in natural stands in Canada,” Canadian Journal of Forest Research, vol. 21, no. 10, pp. 1466–1474, 1991.
[5]  J. L. Clutter, J. C. Fortson, L. V. Pienaar, G. H. Brister, and R. L. Bailey, Timber Management: A Quantitative Approach, John Willey & Sons, New York, NY, USA, 1983.
[6]  J. S. Thrower and J. W. Goudie, “Estimating dominant height and site index of even-aged interior douglas-fir in British Columbia,” Western Journal of Applied Forestry, vol. 7, pp. 20–25, 1992.
[7]  J. L. Stape, D. Binkley, M. G. Ryan et al., “The Brazil Eucalyptus Potential Productivity Project: influence of water, nutrients and stand uniformity on wood production,” Forest Ecology and Management, vol. 259, no. 9, pp. 1684–1694, 2010.
[8]  I. C. D. L. Guedes, L. M. Coelho Júnior, A. D. de Oliveira, J. M. de Mello, J. L. P. de Rezende, and C. P. D. C. Silva, “Economic analysis of replacement regeneration and coppice regeneration in eucalyptus stands under risk conditions,” Cerne, vol. 17, no. 3, pp. 393–401, 2011.
[9]  A. C. Almeida, R. Maestri, J. J. Landsberg, and J. R. S. Scolforo, “Linking process-based and empirical forest models to use as a practical tool for decision-making in fast growing Eucalyptus plantation in Brazil,” in Modelling Forest Systems, A. Amaro and M. Tomé, Eds., pp. 63–74, CABI, Walling Ford, UK, 2002.
[10]  H. E. Burkhart, “Development of empirical growth and yield models,” in Empirical and Process Based Models for Forest Tree and Stand Growth Simulation, A. Amaro and M. Tomé, Eds., pp. 53–60, Edi??es Salamandra, Lisboa, Portugal, 1997.
[11]  D. D. Reed, “Ecophysiologival models of forest growth: uses and limitations,” in Empirical and Process Based Models for Forest Tree and Stand Growth Simulation, A. Amaro and M. Tomé, Eds., pp. 305–311, Edi??es Salamandra, Lisboa, Portugal, 1997.
[12]  C. Peng, “Growth and yield models for uneven-aged stands: past, present and future,” Forest Ecology and Management, vol. 132, no. 2-3, pp. 259–279, 2000.
[13]  P. Snowdon, R. C. Woollons, and M. L. Benson, “Incorporation of climatic indices into models of growth of Pinus radiata in a spacing experiment,” New Forests, vol. 16, no. 2, pp. 101–123, 1998.
[14]  J. H. Louw and M. C. Scholes, “Site index functions using site descriptors for Pinus patula plantations in South Africa,” Forest Ecology and Management, vol. 225, no. 1–3, pp. 94–103, 2006.
[15]  A. C. F. Filho, J. R. S. Scolforo, M. Z. Ferreira et al., “Dominant height projection model with the addition or environmental variables,” Cerne, vol. 17, no. 3, pp. 427–433, 2011.
[16]  R. Johnson and D. Wichern, Applied Multivariate Statistical Analysis, Prentice Hall, Upper Saddle River, NJ, USA, 4th edition, 1998.
[17]  J. G. Isebrands and T. R. Crow, “Introduction to uses and interpretation of principal components analysis in forest biology,” General Technical Report NC- 17, U.S.D.A. Forest Service, St. Paul, Minn, USA, 1975.
[18]  J. K. Vanclay and J. P. Skovsgaard, “Evaluating forest growth models,” Ecological Modelling, vol. 98, no. 1, pp. 1–12, 1997.
[19]  R. E. McMurtrie, D. A. Rook, and F. M. Kelliher, “Modelling the yield of Pinus radiata on a site limited by water and nitrogen,” Forest Ecology and Management, vol. 30, no. 1–4, pp. 381–413, 1990.
[20]  A. C. Almeida, J. J. Landsberg, and P. J. Sands, “Parameterisation of 3-PG model for fast-growing Eucalyptus grandis plantations,” Forest Ecology and Management, vol. 193, no. 1-2, pp. 179–195, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133