全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect of Climate Variables on Monthly Growth in Modeling Biological Yield of Araucaria angustifolia and Pinus taeda in the Juvenile Phase

DOI: 10.1155/2013/646759

Full-Text   Cite this paper   Add to My Lib

Abstract:

The aim of this study was to investigate the effect of climate variables on monthly growth in diameter and height of Araucaria angustifolia (Bert.) O. Kuntze and of Pinus taeda L., over a six-year period, as well as verifing the contribution of these variables in the composition of the Chapman-Richards model. To this end, we selected 30 trees of each species and measured monthly the diameter and height, between June 2006 and August 2012. The climate variables were obtained from two SIMEPAR meteorological stations near the plantings. A correlation matrix was constructed to determine the effect of climate variables on the monthly growth. Next a principal component analysis (PCA) was conducted to determine the climate variables to be included in the fit of the Chapman-Richards model. The results indicated that the climate variables with the highest correlation (about 0.6) with monthly growth in diameter and height of the species were temperature, photoperiod and atmospheric pressure, and precipitation for some years of the study. The fitted model that included climate variables showed reduced Syx% of about 0.8% compared to the traditional biological model. However, ANOVA showed no statistical difference between the production estimates obtained by both models. 1. Introduction In forestry planning knowledge of the present and future growth and yield of trees and forest stands is important as it aids in the implementation of appropriate management regimes, when the quality of the final product is the goal for an increasingly demanding consumer timber market. In this context, biological modeling becomes a useful tool in planning forest production. Moreover, Maestri [1] pointed out that modeling growth is possible only if a perfect match between the measurements of stands in forest inventory and environmental variables is carefully aligned in spatial and temporal terms. However, environmental characteristics are not reflected in traditional biological growth models, which only consider tree growth as a function of the size and age of the individuals. In this sense, statistical methodologies have evolved in recent years, enabling a breakthrough in forest data modeling, and thereby allowing researchers to arrive at estimates that represent reality with increasing accuracy, a fact that has motivated numerous attempts to model the environmental factors in association with biological growth and yield. This fact suggests that establishing a link using modeling between environmental variables and the productive capacity of the forest stand seems to contribute to the

References

[1]  R. Maestri, Modelo de crescimento e produ??o para povoamentos clonais de Eucalyptus grandis considerando variáveis ambientais [Teses de Doutorado], Setor de Ciências Agrárias, Universidade Federal do Paraná, Curitiba, Brazil, 2003.
[2]  B. Zeide, “Analysis of growth equation,” Forest Science, vol. 39, no. 3, pp. 594–616, 1993.
[3]  R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical Analysis, Pearson Prentice Hall, New Jersey, NJ, USA, 6th edition, 2007.
[4]  B. E. Schlaegel, “Testing, reporting, and using biomass estimation models,” in Proceedings of the 3rd Meeting of the Southern Forest Biomass Working Group: Southern Forest Biomass Workshop, C. A. Gresham and W. Belle Baruch Forest Science Institute of Clemson University, Eds., pp. 95–112, Clemson University, Georgetown, South Carolina, June 1981.
[5]  S. A. Machado, M. A. Figura, L. C. R. Silva, R. G. M. Nascimento, S. M. S. Quirino, and S. J. Téo, “Dinamica de crescimento de plantios jovens de Araucaria angustifolia e Pinus taeda,” Pesquisa Florestal Brasileira, vol. 30, no. 62, pp. 165–170, 2010.
[6]  C. L. Brown, “Secondary growth,” in Trees: Structure and Function, M. H. Zimmermann and C. L. Brown, Eds., p. 336, Springer, New York, NY, USA, 1974.
[7]  E. Assmann, The Principles of Forest Yield Study: Studies in the Organic Production, Structure, Increment, and Yield of Forest Stands, Pergamon press, Oxford, UK, 1970.
[8]  G. J. Silva, J. H. Campelo Junior, L. R. Brauwers, and J. A. R. Duran, “Avalia??o de plantas adultas de espécies arbóreas do cerrado em fun??o do clima,” Revista Agricultura Tropical, vol. 8, no. 1, pp. 43–56, 2004.
[9]  C. L. Brown, “Growth and Form,” in Trees Structure and Function, M. H. Zimmermann and C. L. Brown, Eds., p. 336, Spring, New York, NY, USA, 1974.
[10]  U. Lüttge and B. Hertel, “Diurnal and annual rhythms in trees,” Trees, vol. 23, no. 4, pp. 683–700, 2009.
[11]  C. C. Souza, Modelo de crescimento, com variáveis ambientais, para o ipê felpudo em diferentes espa?amentos. [Disserta??es de Mestrado], Mestrado em Recursos Florestais, Escola Superior de Agricultura “Luiz de Queiroz”, Piracicaba, Brazil, 2004.
[12]  I. A. Bognola, Unidades de manejo para Pinus taeda L. no planalto norte catarinense, com base em características do meio físico. [Teses de Doutorado], Setor de ciências Agrárias, Universidade Federal do Paraná, Curitiba, Brazil, 2007.
[13]  M. L. B. Zanon, Crescimento da Araucaria angustifolia (Bertol.) Kuntze. diferenciado por dioicia. [Teses de Doutorado], Programa de Pós-gradua??o em Engenharia Florestal, Universidade Federal de Santa Maria, Santa Maria, Brazil, 2007.
[14]  C. R. Sette Jr, M. T. Filho, C. T. D. S. Dias, and J. P. Laclau, “Crescimento em diametro do tronco das árvores de Eucalyptus grandis W. Hill. ex. Maiden e rela??o com as variáveis climáticas e fertiliza??o mineral,” Revista árvore, vol. 34, no. 6, pp. 979–990, 2010.
[15]  J. L. Stape, A. N. Gomes, and T. F. de Assis, “Estimativa da produtividade de povoamentos monoclonais de Eucaliptus grandiz x urophylla no nordeste do Estado da Bahia: Brasil em fun??o das variabilidades pluviométricas e edáficas,” in Proceedings of the International Union of Forest Research Organizations Conference on silviculture and improvemente of Eucalyptus (IUFRO '97), vol. 4, pp. 192–198, EMBRAPA/CNPF, Salvador, Brazil, 1997.
[16]  A. L. D. O. M. Luz, Análise da forma??o dos anéis de crescimento anual das árvores ao longo dum ciclo de actividade cambial. [Disserta??es de Mestrado], Instituto Superior de Agronomia, Universidade Técnica de Lisboa, Lisboa, Portugal, 2011.
[17]  J. M. Oliveira, Anéis de crescimento de Araucaria angustifolia (Bertol.) O. Kuntze: bases de dendroecologia em ecossistemas subtropicais montanos no Brasil. [Teses de Doutorado], Programa de Pós-Gradua??o em Ecologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 2007.
[18]  C. A. Ferreira and H. T. Z. Couto, “A influência de variáveis ambientais no crescimento de espécies/procedências de Eucalyptus spp. nos estados de Minas Gerais e Espírito Santo,” Boletim da Pesquisa Florestal, vol. 3, pp. 9–35, 1981.
[19]  M. Z. Ferreira, Modelagem da influência de variáveis ambientais no crescimento e produ??o de Eucalyptus sp. [Teses de Doutorado], Programa de Pós-gradua??o em Engenharia Florestal, Universidade Federal de Lavras, Lavras, Brazil, 2009.
[20]  M. Temps, Adi??o da precipita??o pluviométrica na modelagem do crescimento e da produ??o florestal em povoamentos n?o desbastados de Pinus taeda L. [Disserta??es de Mestrado], Programa de Pós-gradua??o em Engenharia Florestal, Setor de Ciência Agrárias, Universidade Federal do Paraná, Curitiba, Brazil, 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133