Canada yew (Taxus canadensis) is a clonal shrub that forms discrete patches and was formerly an important component of forest understories in much of northeastern North America. Following Euro-American settlement, Canada yew has been extirpated or reduced in abundance throughout much of its former range, particularly in the USA; winter browsing by white-tailed deer (Odocoileus virginianus) has been implicated as responsible for much of its decline. Little is known about the factors affecting deer browsing intensity on Canada yew. We examined factors related to browsing intensity on Canada yew across three spatial scales in 29 forest stands in Michigan, USA. Browsing intensity on stems was related principally to two factors acting simultaneously across multiple spatial scales. Browsing intensity was negatively related to amount of Canada yew at the scale of the forest stand and negatively related to distance from the edge of Canada yew patches, effectively creating refugia from browsing. The browsing patterns we observed suggest that yew exists in two alternate stable states: (1) as loose aggregations of small stems or (2) large, dense patches of large stems. The implications of changes in deer density or snow cover to the probability of local persistence of Canada yew are discussed. 1. Introduction It is well accepted that large mammalian herbivores make foraging decisions based on interactions with resources across several spatial scales [1–3]. The collective result of foraging decisions made by herbivores at the plant individual or population level can ultimately influence plant populations, plant community structure, and ecosystem processes [3–6]. Therefore, it is important to understand patterns in ungulate foraging at multiple spatial scales to allow management and conservation efforts for affected plants to be scaled appropriately [2, 7]. Opportunities to better understand spatially dependent browsing patterns by ungulates emerge with Canada yew (Taxus canadensis), a declining species that is sensitive to browsing. Also known as ground hemlock or American yew, Canada yew is a monoecious, evergreen shrub native to the mixed conifer-hardwood forests of the northeastern United States and southeastern Canada [8]. Canada yew has garnered interest as a nontimber forest product over the last 20 years because of its pharmaceutical properties [9, 10]. Prior to Euro-American settlement, it was likely a major ground cover component in late-successional mesic forests of this region [8]. Canada yew has been extirpated or its abundance significantly reduced
References
[1]
R. L. Senft, M. B. Coughenour, D. W. Bailey, L. R. Rittenhouse, O. E. Sala, and D. M. Swift, “Large herbivore foraging and ecological hierarchies,” BioScience, vol. 37, no. 11, pp. 789–799, 1987.
[2]
M. R. Bergman, G. R. Iason, and A. J. Hester, “Feeding patterns by roe deer and rabbits on pine, willow and birch in relation to spatial arrangement,” Oikos, vol. 109, no. 3, pp. 513–520, 2005.
[3]
J. M?nsson, H. Andrén, ?. Pehrson, and R. Bergstr?m, “Moose browsing and forage availability: a scale-dependent relationship?” Canadian Journal of Zoology, vol. 85, no. 3, pp. 372–380, 2007.
[4]
J. Pastor, B. Dewey, R. J. Naiman, P. F. McInnes, and Y. Cohen, “Moose browsing and soil fertility in the boreal forests of Isle Royale National Park,” Ecology, vol. 74, no. 2, pp. 467–480, 1993.
[5]
D. M. Waller and W. S. Alverson, “The white-tailed deer: a keystone herbivore,” Wildlife Society Bulletin, vol. 25, no. 2, pp. 217–226, 1997.
[6]
D. J. Augustine and S. J. McNaughton, “Ungulate effects on the functional species composition of plant communities: herbivore selectivity and plant tolerance,” The Journal of Wildlife Management, vol. 62, no. 4, pp. 1165–1183, 1998.
[7]
D. W. Bailey, J. E. Gross, E. A. Laca et al., “Mechanisms that result in large herbivore grazing distribution patterns,” Journal of Range Management, vol. 49, no. 5, pp. 386–400, 1996.
[8]
S. K. Windels and D. J. Flaspohler, “The ecology of Canada yew (Taxus canadensis marsh.): a review,” Botany, vol. 89, no. 1, pp. 1–17, 2011.
[9]
S. K. Windels and D. J. Flaspohler, “Considerations for conservation and restoration of Canada yew in protected areas,” Natural Areas Journal. In press.
[10]
D. Kingston, “Taxol and its analog,” in Anticancer Agents From Natural Products, G. M. Cragg, D. G. I. Kingston, and D. J. Newman, Eds., pp. 89–122, CRC & Taylor & Francis, Boca Raton, Fla, USA, 2005.
[11]
A. Leopold, L. K. Sowls, and D. L. Spencer, “A survey of over-populated deer ranges of the United States,” The Journal of Wildlife Management, vol. 11, no. 2, pp. 163–177, 1947.
[12]
E. W. Beals, G. Cottam, and R. J. Vogl, “Influence of deer on vegetation of the Apostle Islands, wisconsin,” The Journal of Wildlife Management, vol. 24, no. 1, pp. 68–80, 1960.
[13]
T. D. Allison, “The influence of deer browsing on the reproductive biology of Canada yew (Taxus canadensis marsh.)-I. Direct effect on pollen, ovule, and seed production,” Oecologia, vol. 83, no. 4, pp. 523–529, 1990.
[14]
J. J. Stachowicz and T. D. Allison, “Vegetation, browsing, and site factors as determinants of Canada yew distribution in central new hampshire,” Rhodora, vol. 97, pp. 357–374, 1995.
[15]
W. S. Alverson and D. M. Waller, “Deer populations and the widespread failure of hemlock regeneration in northern forests,” in The Science of Overabundance: Deer Ecology and Population Management, W. J. McShea, H. B. Underwood, and J. H. Rappole, Eds., pp. 280–297, Smithsonion Institution Press, Washington, DC, USA.
[16]
National Weather Service Marquette Weather Forecast Office, National Oceanic and Atmospheric Organization, Negaunee, Mich, USA, http://www.crh.noaa.gov/mqt/normals/marquette.php.
[17]
M. J. Potvin, T. D. Drummer, J. A. Vucetich, D. E. Beyer Jr., R. O. Peterson, and J. H. Hammill, “Monitoring and habitat analysis for wolves in upper Michigan,” The Journal of Wildlife Management, vol. 69, no. 4, pp. 1660–1669, 2005.
[18]
D. R. King, Deer and hare population-range relationships on garden and south fox islands, [Ph.D. thesis], University of Michigan, Ann Arbor, Mich, USA, 1970.
[19]
K. P. Burnham and D. R. Anderson, Model Selection And Multimodel Inference: A Practical Information-Theoretic Approach, Springer, New York, NY, USA, 2nd edition, 2002.
[20]
K. L. Parker, C. T. Robbins, and T. A. Hanley, “Energy expenditures for locomotion by mule deer and elk,” The Journal of Wildlife Management, vol. 48, no. 2, pp. 474–488, 1984.
[21]
J. D. Forester, D. P. Anderson, and M. G. Turner, “Do high-density patches of coarse wood and regenerating saplings create browsing refugia for aspen (Populus tremuloides Michx.) in Yellowstone National Park (USA)?” Forest Ecology and Management, vol. 253, no. 1–3, pp. 211–219, 2007.
[22]
L. Frid and R. Turkington, “The influence of herbivores and neighboring plants on risk of browsing: a case study using arctic lupine (Lupinus arcticus) and arctic ground squirrels (Spermophilus parryii plesius),” Canadian Journal of Zoology, vol. 79, no. 5, pp. 874–880, 2001.
[23]
H. J. Vivas and B. E. Saether, “Interactions between a generalist herbivore, the moose Alces alces, and its food resources: an experimental study of winter foraging behaviour in relation to browse availability,” Journal of Animal Ecology, vol. 56, no. 2, pp. 509–520, 1987.
[24]
A. J. Hester and G. J. Baillie, “Spatial and temporal patterns of heather use by sheep and red deer within natural heather/grass mosaics,” Journal of Applied Ecology, vol. 35, no. 5, pp. 772–784, 1998.
[25]
K. L. Borgmann, D. M. Waller, and T. P. Rooney, “Does balsam fir (Abies balsamea) facilitate the recruitment of eastern hemlock (Tsuga canadensis)?” American Midland Naturalist, vol. 141, no. 2, pp. 391–397, 1999.
[26]
D. García, R. Zamora, J. A. Hódar, J. M. Gómez, and J. Castro, “Yew (Taxus baccata L.) regeneration is facilitated by fleshy-fruited shrubs in Mediterranean environments,” Biological Conservation, vol. 95, no. 1, pp. 31–38, 2000.
[27]
T. D. Allison, “The influence of deer browsing on the reproductive biology of Canada yew (Taxus canadensis marsh.)-II. Pollen limitation: an indirect effect,” Oecologia, vol. 83, no. 4, pp. 530–534, 1990.
[28]
I. Noy-Meir, “Stability in grazing systems: an application of predator graphs,” Journal of Ecology, vol. 63, no. 2, pp. 459–481, 1975.
[29]
D. J. Augustine, L. E. Frelich, and P. A. Jordan, “Evidence for two alternate stable states in an ungulate grazing system,” Ecological Applications, vol. 8, no. 4, pp. 1260–1269, 1998.
[30]
T. R. McCabe and R. E. McCabe, “Recounting whitetails past,” in The Science of Overabundance: Deer Ecology and Population Management, W. J. McShea, H. B. Underwood, and J. H. Rappole, Eds., pp. 11–26, Smithsonian Institution Press, Washington DC, USA, 1997.
[31]
T. P. Rooney, S. L. Solheim, and D. M. Waller, “Factors affecting the regeneration of northern white cedar in lowland forests of the Upper Great Lakes region, USA,” Forest Ecology and Management, vol. 163, no. 1–3, pp. 119–130, 2002.
[32]
K. E. Kunkel, N. E. Westcott, and D. A. R. Kristovich, “FOCUS: climate change and lake-effect snow,” in Preparing for A Changing Climate: the Potential Consequences of Climate Variability and Change, P. J. Sousounis and J. M. Bisanz, Eds., Great Lakes Regional Assessment Group, 2000.