全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Human Influences on Tree Diversity and Composition of a Coastal Forest Ecosystem: The Case of Ngumburuni Forest Reserve, Rufiji, Tanzania

DOI: 10.1155/2013/305874

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper reports on the findings of an ecological survey conducted in Ngumburuni Forest Reserve, a biodiversity rich forest reserve within the coastal forests of Tanzania. The main goal of this study was to determine the influence of uncontrolled anthropogenic activities on tree species diversity and composition within the forest ecosystem. It was revealed that economic activities including logging, charcoaling, and shifting cultivation were the most important disturbing activities affecting ecological functioning and biodiversity integrity of the forest. Further to this, we noted that the values of species diversity, composition, and regeneration potential within the undisturbed forest areas were significantly different from those in heavily disturbed areas. These observations confirm that the ongoing human activities have already caused size quality degradation of useful plants, enhanced species diversification impacts to the forest ecosystem, and possibly negatively affected the livelihoods of the adjacent local communities. Despite these disturbances, Ngumburuni forest reserve still holds important proportions of both endemic and threatened animal and plant species. The study suggests urgent implementation of several conservation measures in order to limit accessibility to the forest resources so as to safeguard the richness and abundance of useful biodiversity stocks in the reserve. 1. Introduction Habitat loss, fragmentation, and degradation are currently the most important threats to biodiversity conservation worldwide [1]. Human activities have been widely reported to contribute more to this problem compared to natural factors [2]. Tropical forests especially those located in developing countries are more vulnerable following the fact that the majority of forest adjacent communities are poor and depend directly on the forest resources to sustain their livelihood [3]. Unsustainable use of forest resources, for example, through logging and shifting cultivation, has potential impact on its ecological functioning due to sudden changes on their structure and composition [4]. Emergence of invasive species and loss of ecosystem services resulting from the occurrence of many woody pioneers and herbaceous species have been observed in several disturbed forest ecosystems [1, 5]. Opening of forest canopies in the logged or burnt forests increases light levels which in some cases positively influences diversity indices [6]. Understanding the factors related to human disturbance that affect the tree biodiversity and forest vegetation structure can help

References

[1]  C. H. Cannon, D. R. Peart, and M. Leighton, “Tree species diversity in commercially logged Bornean rainforest,” Science, vol. 281, no. 5381, pp. 1366–1368, 1998.
[2]  F. E. Putz, K. H. Redif, and J. G. Robinson, Biodiversity Conservation in the Context of Tropical Forest Management, The World Bank Environmental Department, Washington, DC, USA, 2000.
[3]  C. Shackleton and S. Shackleton, “The importance of non-timber forest products in rural livelihood security and as safety nets: a review of evidence from South Africa,” South African Journal of Science, vol. 100, no. 11-12, pp. 658–664, 2004.
[4]  J. S. Denslow, “Disturbance and diversity in tropical rain forests: the density effect,” Ecological Applications, vol. 5, no. 4, pp. 962–968, 1995.
[5]  K. Eichhorn, “The plant community of Sungai Wain, East Kalimantan, Indonesia: phytogeographical status and local variation,” Blumea Supplement, vol. 18, pp. 15–35, 2006.
[6]  M. A. Pinard, M. G. Barker, and J. Tay, “Soil disturbance and post-logging forest recovery on bulldozer paths in Sabah, Malaysia,” Forest Ecology and Management, vol. 130, no. 1–3, pp. 213–225, 2000.
[7]  S. A. Pickett, “Drivers and dynamics of change in biodiversity,” in Global Biodiversity Assessment, V. H. Heywood and R. T. Watson, Eds., pp. 311–318, United Nations Environment Programme, Cambridge, UK, 1995.
[8]  J. Kimaro and L. Lulandala, “Contribution of non-timber forest products to poverty alleviation and forest conservation in Rufiji District—Tanzania,” Journal of Livestock Research For Rural Development Livestock Research For Rural Development, vol. 25, no. 5, 2013.
[9]  REMP, Report on Strategy for Assessment of the Woody Vegetation of the Rufiji District, REMP, Rufiji, Tanzania, 2003.
[10]  B. K. Kaale, H. K. Ramadhani, B. T. Kimaryo, R. S. Maro, and H. Abdi, Participatory Forest Resource Assessment, Misitu Yetu Project, CARE Tanzania, Dar es Salaam, Tanzania, 2002.
[11]  N. D. Burgess and G. P. Clarke, Coastal Forest of Eastern Africa, IUCN, Gland, Switzerland, 2000.
[12]  S. A. H. Milledge and B. K. Kaale, Bridging the Gap—Linking Timber Trade with Infrastructural Development in Southern Tanzania: Baseline Data before Completion of the Mkapa Bridge, TRAFFIC East/Southern Africa, Dar es Salaam, Tanzania, 2005.
[13]  P. K. T. Munishi and T. H. Shear, “Rainfall interception and partitioning in afromontane rain forests of the Eastern Arc Mountains, Tanzania: implications for water conservation,” Journal of Tropical Forest Science, vol. 17, no. 3, pp. 355–365, 2005.
[14]  S. M. Philip, Measuring Trees and Forests, CAB International, Wallingford, UK, 2nd edition, 1994.
[15]  R. E. Malimbwi, “An Inventory Report of the Principle Timber Resources of the Miombo and Riverine Woodlands and Forests of Rufiji District,” Tech. Rep. 12, REMP, Utete, Tanzania, 2000.
[16]  C. J. Krebs, Ecological Methodology, Hamper Collins, New York, NY, USA, 1989.
[17]  R. A. Giliba, E. K. Boon, C. J. Kayombo, E. B. Musamba, A. M. Kashindye, and P. F. Shayo, “Species composition, richness and diversity in Miombo Woodland of Bereku Forest Reserve Tanzania,” Journal of Biodiversity, vol. 2, no. 1, pp. 1–7, 2011.
[18]  G. C. Kajembe, Indiginous Management Systems as a Basic for Community Forestry in Tanzania. A Case Study of Dodoma Urban and Lushoto Districts, Wageningen Agricultural University, Wageningen, The Netherlands, 1994.
[19]  LLC, “Illegal” Loging and Global Wood Markerts: Seneca Creek Associates, LLC and Wood Resources International, LLC, 2004.
[20]  M. W. Schwartz, T. M. Caro, and T. Banda-Sakala, “Assessing the sustainability of harvest of Pterocarpus angolensis in Rukwa Region, Tanzania,” Forest Ecology and Management, vol. 170, no. 1–3, pp. 259–269, 2002.
[21]  N. F. Madulu, Population Dynamics and Sustainable Conservation of Protected Areas in Tanzania. the Case of Swagaswaga Game Reserve in Kondoa District, Department of Earth Sciences, Programme for Applied Environmental Impact Assessment. Villav?gen, Uppsala, Sweden, 2001.
[22]  G. M. Barbour, H. J. Burk, and W. D. Pitts, Terrestrial Plant Ecology, The Benjamin/Cummings Publishing, Redwood City, Calif, USA, 1987.
[23]  R. S. Ambasht, A Survey of the Avifauna of Chome Forest Reserve, South Pare Mountains, North-East Tanzania, East African Cross-Border Biodiversty Project, Arusha, Tanzania, 2001.
[24]  Songas, “Songo songo gas to electricity project, environmental studies,” Final Report, SONGAS, Dar es Salaam, Tanzania, 2003.
[25]  J. Obiri, M. Lawes, and M. Mukolwe, “The dynamics and sustainable use of high-value tree species of the coastal Pondoland forests of the Eastern Cape Province, South Africa,” Forest Ecology and Management, vol. 166, no. 1–3, pp. 131–148, 2002.
[26]  T. Jackson, K. Begg, and S. Parkinson, Flexibility in Climate Policy—Making the Kyoto Mechanisim Work, Earthscan, London, UK, 2001.
[27]  G. Tesfaye, D. Teketay, Y. Assefa, and M. Fetene, “The impact of fire on the soil seed bank and regeneration of Harenna Forest, southeastern Ethiopia,” Mountain Research and Development, vol. 24, no. 4, pp. 354–361, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133